Skip to main content
Log in

Time domain de Broglie wave interferometry along a magnetic guide

  • Integrated Atom Optics and Interferometry
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Time domain de Broglie wave interferometry [Phys. Rev. Lett. 79, 784 (1997)] is applied to Rb87 atoms in a magnetic guide. A standing wave light field is carefully aligned along the guiding direction of the magnetic trapping potential from a soft-ferromagnetic 4-foil structure. A sequence of two standing wave pulses is applied to the magnetically trapped atoms. The backscattered light at the atomic density grating revival time is collected and detected via a heterodyning technique. In addition to the observed recoil oscillations that fit the interferometer theory for atoms in free space, we observe a decay of the interferometer contrast on a millisecond time scale with unexpected millisecond-scale oscillations. We find that the oscillating decay is explained by a residual variation of the linear trapping potential along the standing wave direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Hommelhoff, W. Hansel, T. Steinmetz, T.W. Hansch, J. Reichel, New J. Phys. 7, 3 (2005)

    Article  Google Scholar 

  • D. Muller, D. Anderson, R. Grow, P.D.D. Schwindt, E. Cornell, Phys. Rev. Lett. 83, 5193 (1999)

    Article  Google Scholar 

  • N.H. Dekker et al., Phys. Rev. Lett. 84, 1124 (2000)

    PubMed  Google Scholar 

  • D. Cassettari et al., Phys. Rev. lett. 85, 5483 (2000)

    Article  PubMed  Google Scholar 

  • D. Müller, E.A. Cornell, M. Prevedelli, P.D.D. Schwindt, Y.J. Wang, D.Z. Anderson, Phys. Rev. A 63, 041602 (2001)

    Article  Google Scholar 

  • R. Dumke, T. Muther, M. Volk, W. Ertmer, G. Birkl, Phys. Rev. Lett. 89, 220402 (2002)

    Article  PubMed  Google Scholar 

  • M.D. Girardeau, K.K. Das, E.M. Wright, Phys. Rev. A 66, 023604 (2002)

    Article  Google Scholar 

  • W. Hänsel, J. Reichel, P. Hommelhoff, T.W. Hänsch, Phys. Rev. A 64, 063607 (2001)

    Article  Google Scholar 

  • E. Andersson et al., Phys. Rev. Lett. 88, 100401 (2002)

    Article  PubMed  Google Scholar 

  • G. Zabow, R.S. Conroy, M.G. Prentiss, Phys. Rev. Lett. 92, 180404 (2004)

    Article  PubMed  Google Scholar 

  • This requirement is relaxed if the input atomic wave function obeys the symmetry of splitting, as the examples discussed in [8,9]. This class of beamsplitters in principle allows a combination of short atomic de Broglie wavelength and a smooth splitting potential. Practically the challenge comes from the suppression of the coupling between the symmetric and anti-symmetric states of the confined atomic waves during the splitting. The suppression favors a quick splitting and thus a sharp splitting potential

  • A.E. Leanhardt et al., Phys. Rev. Lett. 89, 040401 (2002)

    Article  PubMed  Google Scholar 

  • Y.J. Lin, I. Teper, C. Chin, V. Vuletic, Phys. Rev. Lett. 92, 050404 (2004)

    Article  PubMed  Google Scholar 

  • Ying-Ju Wang et al, Phys. Rev. Lett. 94, 090405 (2005)

    Article  PubMed  Google Scholar 

  • S.B. Cahn et al., Phys. Rev. Lett. 79, 784 (1997)

    Article  Google Scholar 

  • D.V. Strekalov, A. Turlapov, A. Kumarakrishnan, T. Sleator, Phys. Rev. A 66, 023601 (2002)

    Article  Google Scholar 

  • B.S. Mathur, W. Happer, Phys. Rev. 171, 11 (1969)

    Google Scholar 

  • M. Vengalattore, W. Rooijakkers, M. Prentiss, Phys. Rev. A 66, 053403 (2002)

    Article  Google Scholar 

  • The local field effect by theμ-metal foils has prevented us from freely introducing a homogenous plug field B0 along the guiding potential. An experimental control of B0 and thus the ratio r0/σ to obtain (5) and (5’) could have been helpful to gain a clearer insight into the influence of the magnetic potential to the interferometer experiment discussed in the work

  • It can be shown that, by including an imaginary part to the pulse area θ, the Bessel functions involve in the equation (2) follows following replacing rule: Jn [2θsin (4ωr T)] is replaced by \(J_n [\sqrt {x^2-y^2} ][({x+y})/({x-y})]^{n/2}\), with x=2 Re [ θ ] sin [4ωr T], \(y= 2 {\rm Im} [\theta \)] cos[4ωr T]

  • M. Olshanii, V. Dunjko, e-print arXiv:cond-matt/0505358

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Su, E. & Prentiss, M. Time domain de Broglie wave interferometry along a magnetic guide. Eur. Phys. J. D 35, 111–118 (2005). https://doi.org/10.1140/epjd/e2005-00212-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00212-8

Keywords

Navigation