Skip to main content
Log in

Finite temperature scaling theory for the collapse of Bose-Einstein condensate

  • Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We show how to apply the scaling theory in an inhomogeneous system like harmonically trapped Bose condensate at finite temperature. We calculate the temperature dependence of the critical number of particles by a scaling theory within the Hartree-Fock approximation and find that there is a dramatic increase in the critical number of particles as the condensation point is approached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Anderson et al., Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  2. K.B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  3. M.O. Mewes et al., Phys. Rev. Lett. 77, 416 (1996)

    Article  ADS  Google Scholar 

  4. C.C. Bradley et al., Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  5. Y. Takasu et al., Phys. Rev. Lett. 91, 040404 (2003)

    Article  ADS  Google Scholar 

  6. T. Weber et al., Science 299, 232 (2003)

    Article  ADS  Google Scholar 

  7. A. Griesmaier et al., Phys. Rev. Lett. 94, 160401 (2005)

    Article  ADS  Google Scholar 

  8. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford Sc. Pub., 2003)

  9. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge, 2001)

  10. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  11. A. Posazhennikova, Rev.Mod. Phys. 78, 1111 (2006); A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)

    Article  ADS  Google Scholar 

  12. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  Google Scholar 

  13. S. Giorgini, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 54, R4633 (1996); S. Biswas, Phys. Lett. A 372, 1574 (2008)

    Article  ADS  Google Scholar 

  14. G. Baym, C.J. Pethick, Phys. Rev. Lett. 76, 6 (1996)

    Article  ADS  Google Scholar 

  15. J.L. Roberts et al., Phys. Rev. Lett. 81, 5109 (1998)

    Article  ADS  Google Scholar 

  16. S. Inouye et al., Nature 392, 151 (1998)

    Article  ADS  Google Scholar 

  17. C.A. Sackett, H.T.C. Stoof, R.G. Hulet, Phys. Rev. Lett. 80, 2031 (1998)

    Article  ADS  Google Scholar 

  18. C.C. Bradley, C.A. Sackett, R.G. Hulet, Phys. Rev. Lett. 78, 985 (1997)

    Article  ADS  Google Scholar 

  19. S.L. Cornish et al., Phys. Rev. Lett. 85, 1795 (2000)

    Article  ADS  Google Scholar 

  20. J.L. Roberts et al., Phys. Rev. Lett. 86, 4211 (2001)

    Article  ADS  Google Scholar 

  21. P.A. Ruprecht et al., Phys. Rev. A 51, 4704 (1995)

    Article  ADS  Google Scholar 

  22. Y. Kagan, E.L. Surkov, G.V. Shlyapnikov, Phys. Rev. A 54, R1753 (1996)

    Article  ADS  Google Scholar 

  23. L.P. Pitaevskii, Phys. Lett. A 221, 14 (1996)

    Article  ADS  Google Scholar 

  24. V.I. Yukalov, E.P. Yukalova, Phys. Rev. A 72, 063611 (2005)

    Article  ADS  Google Scholar 

  25. C.M. Savage, N.P. Robins, J.J. Hope, Phys. Rev. A 67, 014304 (2003)

    Article  ADS  Google Scholar 

  26. L. Erdos, B. Schlein, H.T. Yau, Phys. Rev. Lett. 98, 040404 (2007); A. Elgart, L. Erdos, B. Schlein, H.T. Yau, Arch. Ration. Mech. Anal. 179, 265 (2006)

    Article  ADS  Google Scholar 

  27. M. Houbiers, H.T.C. Stoof, Phys. Rev. A 54, 5055 (1996)

    Article  ADS  Google Scholar 

  28. M.J. Davis, D.A.W. Hutchinson, E. Zaremba, J. Phys. B 32, 3993 (1999)

    Article  ADS  Google Scholar 

  29. E.J. Mueller, G. Baym, Phys. Rev. A 62, 053605 (2000)

    Article  ADS  Google Scholar 

  30. F. Gerbier et al., Phys. Rev. Lett. 92, 030405 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S. Finite temperature scaling theory for the collapse of Bose-Einstein condensate. Eur. Phys. J. D 55, 653–658 (2009). https://doi.org/10.1140/epjd/e2009-00221-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00221-7

PACS

Navigation