Skip to main content

Advertisement

Log in

Interplay of structural and electronic stabilizing factors in neutral and cationic phosphine protected Au13 clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Stable ligand protected sub-nanometer metal clusters exist as different structural isomers which mainly differ by the geometry of the metal core. The structural and electronic properties of the bare and phosphine protected gold, Au13, clusters were theoretically investigated in order to elucidating the relation between different metal core geometries, electronic structures and the stability of the complex. For neutral and low (3+) charged bare clusters, bilayers and flake geometries are computed to be more stable than the icosahedral geometry while for the cation 5+ the most stable metal core exhibits a regular icosahedral geometry. Flake geometries are composed of edge-fused gold tetrahedron motifs and triangular rings. The binding with phosphine induces their stabilization with respect to the bilayer and icosahedral structures. Unexpectedly, the stabilization of the ligated flake geometry with respect to the compact icosahedral-based core increases with the positive overall charge of the complex, being maximum for the highly charged species [Au13 (PH3)10]5+. The origin of the stability is explained in connection with electronic structure and the charge transfer induced by the ligand shell. The distribution of the spin density of the neutral Au13(PH3)12 with a flat cage metal core is characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pyykko, Chem. Soc. Rev. 37, 1967 (2008)

    Article  Google Scholar 

  2. J.R. Shakirova, E.V. Grachova, V.V. Gurzhiy, I.O. Koshevoy, A.S. Melnikov, O.V. Sizova, S.P. Tunik, A. Laguna, Dalton Trans. 41, 2941 (2012)

    Article  Google Scholar 

  3. E.S. Shibu, M.A.H. Muhammed, T. Tsukuda, T. Pradeep, J. Phys. Chem. C 112, 12168 (2008)

    Article  Google Scholar 

  4. C.L. Heinecke, T.W. Ni, S. Malola, V. Mäkinen, O.A. Wong, H. Häkkinen, C.J. Ackerson, J. Am. Chem. Soc. 134, 13316 (2012)

    Article  Google Scholar 

  5. G. Periyasamy, F. Remacle, Nano Lett. 9, 3007 (2009)

    Article  ADS  Google Scholar 

  6. M. Wang, Z. Wu, J. Yang, G. Wang, H. Wang, W. Cai, Nanoscale 4, 4087 (2012)

    Article  ADS  Google Scholar 

  7. B. Fresch, H.G. Boyen, F. Remacle, Nanoscale 4, 4138 (2012)

    Article  ADS  Google Scholar 

  8. M.-C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2003)

    Article  Google Scholar 

  9. R. Sardar, A.M. Funston, P. Mulvaney, R.W. Murray, Langmuir 25, 13840 (2009)

    Article  Google Scholar 

  10. R.W. Murray, Chem. Rev. 108, 2688 (2008)

    Article  Google Scholar 

  11. S.W. Boettcher, N.C. Strandwitz, M. Schierhorn, N. Lock, M.C. Lonergan, G.D. Stucky, Nat. Mater. 6, 592 (2007)

    Article  Google Scholar 

  12. S.H. Radwan, H.M.E. Azzazy, Expert Rev. Mol. Diagn. 9, 511 (2009)

    Article  Google Scholar 

  13. W. Jiang, Y.S. KimBetty, J.T. Rutka, C.W. ChanWarren, Nat. Nanotechnol. 3, 145 (2008)

    Article  ADS  Google Scholar 

  14. K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P.C. Wang, S. He, X. Zhang, X.-J. Liang, ACS Nano. 6, 4483 (2012)

    Article  Google Scholar 

  15. T. Ishida, M. Haruta, Angew. Chem. Int. Ed. 46, 7154 (2007)

    Article  Google Scholar 

  16. T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei, M. Haruta, Angew. Chem. 120, 9405 (2008)

    Article  Google Scholar 

  17. P. Maity, S. Xie, M. Yamauchi, T. Tsukuda, Nanoscale 4, 4027 (2012)

    Article  ADS  Google Scholar 

  18. Y. Kamei, Y. Shichibu, K. Konishi, Angew. Chem. Int. Ed. 50, 7442 (2011)

    Article  Google Scholar 

  19. Y. Shichibu, Y. Kamei, K. Konishi, Chem. Commun. 48, 7559 (2012)

    Article  Google Scholar 

  20. Y. Shichibu, K. Suzuki, K. Konishi, Nanoscale 4, 4125 (2012)

    Article  ADS  Google Scholar 

  21. Y. Pei, Y. Gao, N. Shao, X.C. Zeng, J. Am. Chem. Soc. 131, 13619 (2009)

    Article  Google Scholar 

  22. P. Pyykko, Chem. Rev. 88, 563 (1988)

    Article  Google Scholar 

  23. P. Schwerdtfeger, M. Dolg, W.H.E. Schwarz, G.A. Bowmaker, P.D.W. Boyd, J. Chem. Phys. 91, 1762 (1989)

    Article  ADS  Google Scholar 

  24. H. Häkkinen, M. Moseler, U. Landman, Phys. Rev. Lett. 89, 033401 (2002)

    Article  ADS  Google Scholar 

  25. H. Häkkinen, Chem. Soc. Rev. 37, 1847 (2008)

    Article  Google Scholar 

  26. M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. 105, 9157 (2008)

    Article  ADS  Google Scholar 

  27. T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)

    Article  ADS  Google Scholar 

  28. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)

    Article  ADS  Google Scholar 

  29. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

    Article  ADS  Google Scholar 

  30. W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284 (1985)

    Article  ADS  Google Scholar 

  31. Gaussian 09, Revision A.02, edited by M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox (Gaussian, Inc., Wallingford, CT, 2009)

  32. D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chem. Acc.: Theor. Comput. Mod. 77, 123 (1990)

    Article  Google Scholar 

  33. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  34. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Article  Google Scholar 

  35. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  36. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  ADS  Google Scholar 

  37. J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)

    Article  ADS  Google Scholar 

  38. R.M. Olson, S. Varganov, M.S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S.A. Kucharski, M. Musial, J. Am. Chem. Soc. 127, 1049 (2004)

    Article  Google Scholar 

  39. J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)

    Article  Google Scholar 

  40. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  Google Scholar 

  41. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)

    Article  ADS  Google Scholar 

  42. U.C. Singh, P.A. Kollman, J. Comput. Chem. 5, 129 (1984)

    Article  Google Scholar 

  43. B.H. Besler, K.M. Merz, P.A. Kollman, J. Comput. Chem. 11, 431 (1990)

    Article  Google Scholar 

  44. F.L. Hirshfeld, Theor. Chem. Acc.: Theor. Comput. Mod. 44, 129 (1977)

    Article  Google Scholar 

  45. J.P. Ritchie, J. Am. Chem. Soc. 107, 1829 (1985)

    Article  Google Scholar 

  46. J.P. Ritchie, S.M. Bachrach, J. Comput. Chem. 8, 499 (1987)

    Article  Google Scholar 

  47. H. Häkkinen, B. Yoon, U. Landman, X. Li, H.-J. Zhai, L.-S. Wang, J. Phys. Chem. A 107, 6168 (2003)

    Article  Google Scholar 

  48. S. Gilb, P. Weis, F. Furche, R. Ahlrichs, M.M. Kappes, J. Chem. Phys. 116, 4094 (2002)

    Article  ADS  Google Scholar 

  49. L.-M. Wang, L.-S. Wang, Nanoscale 4, 4038 (2012)

    Article  ADS  Google Scholar 

  50. X. Xing, B. Yoon, U. Landman, J.H. Parks, Phys. Rev. B 74, 165423 (2006)

    Article  ADS  Google Scholar 

  51. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  52. L. Xiao, L. Wang, Chem. Phys. Lett. 392, 452 (2004)

    Article  ADS  Google Scholar 

  53. B. Assadollahzadeh, P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009)

    Article  ADS  Google Scholar 

  54. M.J. Piotrowski, P. Piquini, J.L.F. Da Silva, Phys. Rev. B 81, 155446 (2010)

    Article  ADS  Google Scholar 

  55. L.L. Wang, D.D. Johnson, Phys. Rev. B 75, 235405 (2007)

    Article  ADS  Google Scholar 

  56. T. Futschek, M. Marsman, J. Hafner, J. Phys.: Condens. Matter 17, 5927 (2005)

    Article  ADS  Google Scholar 

  57. M. Zhu, C.M. Aikens, M.P. Hendrich, R. Gupta, H. Qian, G.C. Schatz, R. Jin, J. Am. Chem. Soc. 131, 2490 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Remacle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fresch, B., Hanozin, E., Dufour, F. et al. Interplay of structural and electronic stabilizing factors in neutral and cationic phosphine protected Au13 clusters. Eur. Phys. J. D 66, 326 (2012). https://doi.org/10.1140/epjd/e2012-30575-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30575-4

Keywords

Navigation