Skip to main content
Log in

Stability of alternating current gliding arcs

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A gliding arc is a quenched plasma that can be operated as a non-thermal plasma at atmospheric pressure and that is thus suitable for large-scale plasma surface treatment. For its practical industrial use the discharge should be extended stably in ambient air. A simple analytical calculation based on Ohm’s law indicates that the critical length of alternating current (AC) gliding arc discharge columns can be larger than that of a corresponding direct current (DC) gliding arc. This finding is supported by previously published images of AC and DC gliding arcs. Furthermore, the analysis shows that the critical length can be increased by increasing the AC frequency, decreasing the serial resistance and lowering the gas flow rate. The predicted dependence of gas flow rate on the arc length is experimentally demonstrated. The gap width is varied to study an optimal electrode design, since the extended non-equilibrium discharge can be extinguished due to the ignition of an arc discharge at the closest electrode gap. It is experimentally found that as the gap is wider, the discharge column tends to be longer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.L. Mittal, in Polymer Surface Modification: Relevance to Adhesion edited by K.L. Mittal (VSP, Utrecht, 2004), Vol. 3

  2. M. Kogoma, in Generation and Applications of Atmospheric Pressure Plasmas, edited by M. Kogoma, M. Kusano, Y. Kusano (NOVA Publishers, New York, 2011)

  3. Y. Kusano, T.L. Andersen, P.K. Michelsen, J. Phys. Conf. Ser. Surf. 100, 012002 (2009)

    Article  ADS  Google Scholar 

  4. S. Teodoru, Y. Kusano, N. Rozlosnik, P.K. Michelsen, Plasma Proc. Polym. 6, S375 (2009)

    Article  Google Scholar 

  5. Y. Kusano, S. Teodoru, F. Leipold, T.L. Andersen, B.F. Sørensen, N. Rozlosnik, P.K. Michelsen, Surf. Coat. Technol. 202, 5579 (2008)

    Article  Google Scholar 

  6. Y. Kusano, K. Norrman, J. Drews, F. Leipold, S.V. Singh, P. Morgen, A. Bardenshtein, N. Krebs, Surf. Coat. Technol. 205, S490 (2011)

    Article  Google Scholar 

  7. Y. Kusano, S.V. Singh, K. Norrman, J. Drews, F. Leipold, N. Rozlosnik, A. Bardenshtein, N. Krebs, Surf. Eng. 28, 453 (2012)

    Article  Google Scholar 

  8. J. Janča, A. Czernichowski, Surf. Coat. Technol. 98, 1112 (1998)

    Article  Google Scholar 

  9. Y. Kusano, J. Adhesion 90, 755 (2013)

    Article  Google Scholar 

  10. Y. Kusano, T.L. Andersen, H.L. Toftegaard, F. Leipold, A. Bardenshtein, N. Krebs, Int. J. Mater. Eng. Innovation, 5, 122 (2014)

    Article  Google Scholar 

  11. Y. Kusano, Surf. Eng. 25, 415 (2009)

    Article  Google Scholar 

  12. A. Czernichowski, Pure Appl. Chem. 66, 1301 (1994)

    Article  Google Scholar 

  13. A. Fridman, S. Nester, L.A. Kennedy, A. Saveliev, O. Mutaf-Yardimci, Prog. Energy Combust. Sci. 25, 211 (1999)

    Article  Google Scholar 

  14. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (Taylor & Francis, New York, 2004)

  15. I.V. Kuznetsova, N.Y. Kalashnikov, A.F. Gutsol, A.A. Fridman, L.A. Kennedy, J. Appl. Phys. 92, 4231 (2002)

    Article  ADS  Google Scholar 

  16. Y.D. Korolev, O.B. Frants, V.G. Geyman, N.V. Landl, V.S. Kasyanov, IEEE Trans. Plasma Sci. 39, 3319 (2011)

    Article  ADS  Google Scholar 

  17. Y. Kusano, B.F. Sørensen, T.L. Andersen, F. Leipold, J. Adhesion 89, 433 (2013)

    Article  Google Scholar 

  18. Z.W. Sun, J.J. Zhu, Z.S. Li, M. Aldén, F. Leipold, M. Salewski, Y. Kusano, Optics Express 21, 6028 (2013)

    Article  ADS  Google Scholar 

  19. Y. Kusano, B.F. Sørensen, T.L. Andersen, H.L. Toftegaard, F. Leipold, M. Salewski, Z.W. Sun, J.J. Zhu, Z.S. Li, M. Aldén, J. Phys. D 46, 135203 (2013)

    Article  ADS  Google Scholar 

  20. V. Dalaine, J.M. Cormier, P. Lefaucheux, J. Appl. Phys. 83, 2435 (1998)

    Article  ADS  Google Scholar 

  21. V. Dalaine, J.M. Cormier, S. Pellerin, P. Lefaucheux, J. Appl. Phys. 84, 1215 (1998)

    Article  ADS  Google Scholar 

  22. F. Richard, J.M. Cormier, S. Pellerin, J. Chapelle, J. Appl. Phys. 79, 2245 (1996)

    Article  ADS  Google Scholar 

  23. S. Pellerin, F. Richard, J. Chapelle, J.M. Cormier, K. Musiol, J. Phys. D 33, 2407 (2000)

    Article  ADS  Google Scholar 

  24. V. Dalaine, J.M. Cormier, S. Pellerin, E. Hnatiuc, in Proceedings of the 6th International Conference on Optimization of Electrical and Electronic Equipments (OPTIM ’98), 1998, Vol. 1, p. 161

  25. J. Špreka, P. Součk, J.J.W.A. Van Loon, A. Dowson, C. Schwarz, J. Krause, G. Kroesen, V. Kudrle, Eur. Phys. J. D 67, 261 (2013)

    Article  ADS  Google Scholar 

  26. A. Fridman, A. Gutsol, S. Gangoli, Y. Ju, T. Ombrello, J. Propuls. Power 24, 1216 (2008)

    Article  Google Scholar 

  27. H. Maecker, Z. Phys. 157, 1 (1959)

    Article  ADS  Google Scholar 

  28. S. Pellerin, J. Chapelle, F. Richard, K. Musiol, J. Chapelle, J. Phys. D 32, 891 (1999)

    Article  ADS  Google Scholar 

  29. T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, C. Carter, AIAA J. 44, 142 (2006)

    Article  ADS  Google Scholar 

  30. S. Pellerin, J.M. Cormier, K. Musiol, B. Pokrzywka, J. Koulidiati, F. Richard, J. Chapelle, High Temp. Mater. Proc. 2, 49 (1998)

    Article  Google Scholar 

  31. J.J. Zhu, Z.W. Sun, Z.S. Li, A. Ehn, M. Aldén, M. Salewski, F. Leipold, Y. Kusano, J. Phys. D 47, 295303 (2014)

    Article  Google Scholar 

  32. R. Hemmi, Y. Yokomizu, T. Matsumura, J. Phys. D 36, 1097 (2003)

    Article  ADS  Google Scholar 

  33. J. Heberlein, J. Mentel, E. Pfender, J. Phys. D 43, 02301 (2010)

    Article  Google Scholar 

  34. J.M. Meek, J.D. Craggs, Electrical Breakdown of Gases (Oxford University Press, Oxford, 1953)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Kusano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusano, Y., Salewski, M., Leipold, F. et al. Stability of alternating current gliding arcs. Eur. Phys. J. D 68, 319 (2014). https://doi.org/10.1140/epjd/e2014-50343-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50343-8

Keywords

Navigation