Skip to main content
Log in

Two-effective-center approximation for proton-impact single ionization of hydrogen molecules

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Some closed-form expressions are derived for the partial direct and indirect transition amplitudes for proton-impact single ionization of the hydrogen molecules using a first-order two-effective center continuum-wave approximation. The method satisfies the correct boundary conditions in the entrance channel. The basic assumption in this model is that when the active electron is ionized from one of the atomic centers in the molecule, the other scattering center is completely screened by the passive electron. Consequently, the transition amplitude can be expressed as a superposition of the partial ionization amplitudes from two independent scattering centers located at a constant distance from each other. The superposition of the partial amplitudes leads to different interference patterns for various orientations of the molecular target. The calculated cross sections are compared with the experiments and also with other theories. The comparison shows that the present results are reliable.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schulz, D.H. Madison, Int. J. Mod. Phys. A 21, 3649 (2006)

    Article  ADS  Google Scholar 

  2. E. Ghanbari-Adivi, R. Abdollahi-Tadi, Eur. Phys. J. D 67, 266 (2013)

    Article  ADS  Google Scholar 

  3. E. Ghanbari-Adivi, S. Eskandari, Chin. Phys. B 24, 013401 (2015)

    Article  ADS  Google Scholar 

  4. D.H. Madison, O. Al-Hagan, J. At. Mol. Opt. Phys. 2010, 367180 (2010)

    Google Scholar 

  5. A. Hasan, S. Sharma, T.P. Arthanayaka, B.R. Lamichhane, J. Remolina, S. Akula, D.H. Madison, M. Schulz, J. Phys. B 47, 215201 (2014)

    Article  ADS  Google Scholar 

  6. S. Sharma, T.P. Arthanayaka, A. Hasan, B.R. Lamichhane, J. Remolina, A. Smith, M. Schulz, Phys. Rev. A 90, 052710 (2014)

    Article  ADS  Google Scholar 

  7. T.P. Arthanayaka, S. Sharma, B.R. Lamichhane, A. Hasan, J. Remolina, S. Gurung, M. Schulz, J. Phys. B 48, 071001 (2015)

    Article  ADS  Google Scholar 

  8. M.F. Ciappina, C.A. Tachino, R.D. Rivarola, S. Sharma, M. Schulz, J. Phys. B 48, 115204 (2015)

    Article  ADS  Google Scholar 

  9. C. Dimopoulou, R. Moshammer, D. Fischer, C. Höhr, A. Dorn, P.D. Fainstein, J.R. Crespo López Urrutia, C.D. Schröter, H. Kollmus, R. Mann, S. Hagmann, J. Ullrich, Phys. Rev. Lett 93, 123203 (2004)

    Article  ADS  Google Scholar 

  10. N.G. Johnson, R.N. Mello, M.E. Lundy, J. Kapplinger, E. Parke, K.D. Carnes, I. Ben-Itzhak, E. Wells, Phys. Rev. A 72, 052711 (2005)

    Article  ADS  Google Scholar 

  11. F. Afaneh, L.Ph. H. Schmidt, M. Schöffler, K.E. Stiebing, J. Al-Jundi, H. Schmidt-Böcking, R. Dörner, J. Phys. B 40, 3467 (2007)

    Article  ADS  Google Scholar 

  12. M.F. Ciappina, R.D. Rivarola, J. Phys. B 41, 015203 (2008)

    Article  ADS  Google Scholar 

  13. F. Járai-Szabó, K. Nagy-Póra, L. Nagy, J. Phys. B 42, 245203 (2009)

    Article  ADS  Google Scholar 

  14. O. Chuluunbaatar, B. Joulakian, J. Phys. B 43, 155201 (2010)

    Article  ADS  Google Scholar 

  15. O. Alwan, O. Chuluunbaatar, X. Assfeld, A. Naja, B.B. Joulakian, J. Phys. B 47, 225201 (2014)

    Article  ADS  Google Scholar 

  16. P. Weck, O.A. Fojón, J. Hanssen, B. Joulakian, R.D. Rivarola, Phys. Rev. A 63, 042709 (2001)

    Article  ADS  Google Scholar 

  17. C.R. Stia, O.A. Fojón, P.F. Weck, J. Hanssen, B. Joulakian, R.D. Rivarola, Phys. Rev. A 66, 052709 (2002)

    Article  ADS  Google Scholar 

  18. E. Ghanbari-Adivi, S.H. Sattarpour, Mole. Phys. (2015), http://dx.doi.org/10.1080/00268976.2015.1021727

  19. S. Weinbaum, J. Chem. Phys. 1, 593 (1933)

    Article  ADS  Google Scholar 

  20. J. Gao, J.L. Peacher, D.H. Madison, J. Chem. Phys. 123, 204302 (2005)

    Article  ADS  Google Scholar 

  21. J. Gao, J.L. Peacher, D.H. Madison, Phys. Rev. A 72, 032721 (2005)

    Article  ADS  Google Scholar 

  22. J. Gao, J.L. Peacher, D.H. Madison, J. Phys. B 39, 1275 (2006)

    Article  ADS  Google Scholar 

  23. U. Chowdhury, M. Schulz, D.H. Madison, Phys. Rev. A 83, 032712 (2011)

    Article  ADS  Google Scholar 

  24. M.F. Ciappina, W.R. Cravero, J. Phys. B 39, 1091 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghanbari-Adivi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari-Adivi, E. Two-effective-center approximation for proton-impact single ionization of hydrogen molecules. Eur. Phys. J. D 69, 228 (2015). https://doi.org/10.1140/epjd/e2015-60339-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60339-5

Keywords

Navigation