Skip to main content
Log in

Line shape analysis of the Kβ transition in muonic hydrogen

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The Kβ transition in muonic hydrogen was measured with a high-resolution crystal spectrometer. The spectrum is shown to be sensitive to the ground-state hyperfine splitting, the corresponding triplet-to-singlet ratio, and the kinetic energy distribution in the 3p state. The hyperfine splitting and triplet-to-singlet ratio are found to be consistent with the values expected from theoretical and experimental investigations and, therefore, were fixed accordingly in order to reduce the uncertainties in the further reconstruction of the kinetic energy distribution. The presence of high-energetic components was established and quantified in both a phenomenological, i.e. cascade-model-free fit, and in a direct deconvolution of the Doppler broadening based on the Bayesian method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Anderhub et al., Phys. Lett. B 143, 65 (1984)

    Article  ADS  Google Scholar 

  2. N. Bregant et al., Phys. Lett. A 241, 344 (1998)

    Article  ADS  Google Scholar 

  3. B. Lauss et al., Phys. Rev. Lett. 80, 3041 (1998)

    Article  ADS  Google Scholar 

  4. E. Borie, M. Leon, Phys. Rev. A 21, 1460 (1980)

    Article  ADS  Google Scholar 

  5. L. Bracchi, G. Fiorentini, Nuovo Cim. A 43, 9 (1978)

    Article  ADS  Google Scholar 

  6. J.B. Czirr et al., Phys. Rev. 130, 341 (1963)

    Article  ADS  Google Scholar 

  7. A. Badertscher et al., Europhys. Lett. 54, 313 (2001), and references therein

    Article  ADS  Google Scholar 

  8. Th. Siems et al., Phys. Rev. Lett. 84, 4573 (2000)

    Article  ADS  Google Scholar 

  9. D. Gotta, Prog. Part. Nucl. Phys. 52, 133 (2004)

    Article  ADS  Google Scholar 

  10. D.S. Covita et al., Phys. Rev. Lett. 102, 023401 (2009)

    Article  ADS  Google Scholar 

  11. PSI proposal R-98-01, www.fz-juelich.de/ikp/exotic-atoms

  12. D. Gotta et al., Lect. Notes Phys. 745, 165 (2008)

    Article  ADS  Google Scholar 

  13. Th. Strauch et al., Phys. Rev. Lett. 104, 142503 (2010)

    Article  ADS  Google Scholar 

  14. Th. Strauch et al., Eur. Phys. J. A 87, 88 (2011)

    Article  ADS  Google Scholar 

  15. J. Gasser, V.E. Lyubovitskij, A. Rusetsky, Phys. Rep. 456, 167 (2008)

    Article  ADS  Google Scholar 

  16. T.S. Jensen, V.E. Markushin, Eur. Phys. J. D 21, 271 (2002)

    Article  ADS  Google Scholar 

  17. T.S. Jensen, V.N. Pomerantsev, V.P. Popov, arXiv:nucl-th/0712.3010v1 (2007)

  18. V.P. Popov, V.N. Pomerantsev, Phys. Rev. A 83, 032516 (2011)

    Article  ADS  Google Scholar 

  19. V.P. Popov, V.N. Pomerantsev, Hyperfine Int. 209, 75 (2012)

    Article  ADS  Google Scholar 

  20. V.P. Popov, V.N. Pomerantsev, Phys. Rev. A 95, 022506 (2017)

    Article  ADS  Google Scholar 

  21. D. Gotta et al., AIP Conf. Proc. 1037, 162 (2008)

    Article  ADS  Google Scholar 

  22. Th. Strauch et al., Hyperfine Int. 193, 47 (2009)

    Article  ADS  Google Scholar 

  23. D. Gotta et al., Hyperfine Int. 209, 57 (2012)

    Article  ADS  Google Scholar 

  24. M. Hennebach et al., Eur. Phys. J. A 50, 190 (2014)

    Article  ADS  Google Scholar 

  25. R.D. Cousins, Am. J. Phys. 63, 398 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  26. D.S. Covita et al., Hyperfine Int. 193, 61 (2009)

    Article  ADS  Google Scholar 

  27. G.J. Babu, Bayesian and frequentist approaches, in Online Proceedings of the Astronomical Data Analysis Conference (ADA VII) (2012)

  28. F.J. Hartmann, in Proceedings of Physics of Exotic Atoms on Electromagnetic Cascade and Chemistry, Erice, Italy, 1989 (Plenum Press, New York, 1990), p. 23 and 127, and references therein

  29. G.Ya. Korenman, V.P. Popov, Muon Catal. Fusion 4, 145 (1989)

    Google Scholar 

  30. G.Ya. Korenman, V.P. Popov, G.A. Fesenko, Muon Catal. Fusion 7, 179 (1992)

    Google Scholar 

  31. J.S. Cohen, Phys. Rev. 59, 1160 (1999)

    Article  ADS  Google Scholar 

  32. J.S. Cohen, Rep. Prog. Phys. 67, 1769 (2004)

    Article  ADS  Google Scholar 

  33. F. Kottmann et al., Hyperfine Int. 119, 3 (1999)

    Article  ADS  Google Scholar 

  34. F. Kottmann et al., Hyperfine Int. 138, 55 (2001)

    Article  ADS  Google Scholar 

  35. R. Pohl et al., Nature 466, 213 (2010)

    Article  ADS  Google Scholar 

  36. R. Pohl et al., Hyperfine Int. 138, 35 (2001)

    Article  ADS  Google Scholar 

  37. H.-Ch. Schröder et al., Eur. Phys. J C 21, 473 (2001)

    Article  ADS  Google Scholar 

  38. R. Pohl et al., Phys. Rev. Lett. 97, 193402 (2006)

    Article  ADS  Google Scholar 

  39. M. Leon, H.A. Bethe, Phys. Rev. 127, 636 (1962)

    Article  ADS  Google Scholar 

  40. T.S. Jensen, V.E. Markushin, Lect. Notes Phys. 627, 37 (2003)

    Article  ADS  Google Scholar 

  41. T.P. Terada, R.S. Hayano, Phys. Rev. C 55, 73 (1997)

    Article  ADS  Google Scholar 

  42. J.F. Crawford et al., Phys. Rev. D 43, 46 (1991)

    Article  ADS  Google Scholar 

  43. D.J. Abbott et al., Phys. Rev. A 55, 165 (1997)

    Article  Google Scholar 

  44. R. Pohl, Ph.D. thesis, ETH Zürich No. 14096, 2001

  45. V.E. Markushin, Phys. Rev. A 50, 1137 (1994)

    Article  ADS  Google Scholar 

  46. A.V. Kravtsov, A.I. Mikhailov, L.I. Ponomarev, E.A. Solovyov, Hyperfine Int. 138, 99 (2001)

    Article  ADS  Google Scholar 

  47. T.S. Jensen, V.E. Markushin, Eur. Phys. J. D 21, 261 (2002)

    Article  ADS  Google Scholar 

  48. G.Ya. Korenman, V.N. Pomerantsev, V.P. Popov, JETP Lett. 81, 543 (2005)

    Article  ADS  Google Scholar 

  49. V.N. Pomerantsev, V.P. Popov, JETP Lett. 83, 331 (2006)

    Article  Google Scholar 

  50. V.N. Pomerantsev, V.P. Popov, Phys. Rev. A 73, 040501(R) (2006)

    Article  ADS  Google Scholar 

  51. V.P. Popov, V.N. Pomerantsev, arXiv:0809.0742 (2008)

  52. V.P. Popov, V.N. Pomerantsev, Hyperfine Int. 101/102, 133 (1996)

    Article  ADS  Google Scholar 

  53. V.P. Popov, V.N. Pomerantsev, Hyperfine Int. 119, 133 (1999)

    Article  ADS  Google Scholar 

  54. V.P. Popov, V.N. Pomerantsev, Hyperfine Int. 119, 137 (1999)

    Article  ADS  Google Scholar 

  55. V.V. Gusev, V.P. Popov, V.N. Pomerantsev, Hyperfine Int. 119, 141 (1999)

    Article  ADS  Google Scholar 

  56. T.S. Jensen, V.E. Markushin, Eur. Phys. J. D 19, 165 (2002)

    ADS  Google Scholar 

  57. V.P. Popov, V.N. Pomerantsev, arXiv:0712.3111 (2007)

  58. D. Taqqu, AIP Conf. Proc. 181, 217 (1989)

    Article  ADS  Google Scholar 

  59. S. Jonsell, J. Wallenius, P. Froelich, Phys. Rev. A 59, 3440 (1999)

    Article  ADS  Google Scholar 

  60. R. Pohl, Hyperfine Int. 193, 115 (2009)

    Article  ADS  Google Scholar 

  61. M. Diepold et al., Phys. Rev A 88, 042520 (2013)

    Article  ADS  Google Scholar 

  62. S. Kilic, J.-P. Karr, L. Hilico, Phys. Rev. A 70, 042506 (2004)

    Article  ADS  Google Scholar 

  63. E. Lindroth, J. Wallenius, S. Jonsell, Phys. Rev. A 68, 032502 (2003)

    Article  ADS  Google Scholar 

  64. E. Lindroth, J. Wallenius, S. Jonsell, Phys. Rev. A 69, 059903(E) (2004)

    Article  ADS  Google Scholar 

  65. L.M. Simons, Phys. Scr. T22, 90 (1988)

    Article  ADS  Google Scholar 

  66. L.M. Simons, Hyperfine Int. 81, 253 (1993)

    Article  ADS  Google Scholar 

  67. H. Gorke et al., AIP Conf. Proc. 793, 341 (2005)

    Article  ADS  Google Scholar 

  68. D.E. Gotta, L.M. Simons, Spectrochim. Acta. B 120, 9 (2016)

    Article  ADS  Google Scholar 

  69. J. Eggs, K. Ulmer, Z. Angew. Phys. 20, 118 (1965)

    Google Scholar 

  70. G. Zschornack, Nucl. Instrum. Methods 200, 481 (1982)

    Article  Google Scholar 

  71. N. Nelms et al., Nucl. Instrum. Methods A 484, 419 (2002)

    Article  ADS  Google Scholar 

  72. A.D. Holland, M.J.L. Turner, A.F. Abbey, P.J. Pool, Proc. SPIE 2808, 414 (1996)

    Article  ADS  Google Scholar 

  73. P. Indelicato et al., Rev. Sci. Instrum. 77, 043107 (2006)

    Article  ADS  Google Scholar 

  74. D.S. Covita et al., Rev. Scient. Instrum. 79, 033102 (2008)

    Article  ADS  Google Scholar 

  75. P. Indelicato, unpublished (2008)

  76. A.P. Martynenko, R.N. Faustov, JETP 98, 39 (2004)

    Article  ADS  Google Scholar 

  77. R. Deslattes et al., Rev. Mod. Phys. 75, 35 (2003)

    Article  ADS  Google Scholar 

  78. G. Basile et al., Phys. Rev. Lett. 72, 3133 (1994)

    Article  ADS  Google Scholar 

  79. M. Sanchez del Rio, R.J. Dejus, Proc. SPIE Int. Soc. Opt. Eng. 3448, 246 (1998)

    ADS  Google Scholar 

  80. M. Sanchez del Rio, R.J. Dejus, Proc. SPIE Int. Soc. Opt. Eng. 5536, 171 (2004)

    ADS  Google Scholar 

  81. M. Sanchez del Rio, R.J. Dejus, Proc. SPIE Int. Soc. Opt. Eng. http://www.esrf.eu/computing/scientific/xop2.1

  82. WM.J. Veigele, At. Data Tables 5, 51 (1973)

    Article  ADS  Google Scholar 

  83. S. Biri, L. Simons, D. Hitz, Rev. Sci. Instrum. 71, 1116 (2000)

    Article  ADS  Google Scholar 

  84. D.F. Anagnostopulos et al., Nucl. Instrum. Methods A 545, 217 (2005)

    Article  ADS  Google Scholar 

  85. M. Trassinelli et al., J. Phys. Conf. Ser. 58, 129 (2007)

    Article  Google Scholar 

  86. D.S. Covita, High-precision spectroscopy of the 3p–1s transition in muonic hydrogen, Ph.D. thesis, University of Coimbra, 2008, http://hdl.handle.net/10316/7521.

  87. A. Antognini et al., Ann. Phys. 331, 127 (2013)

    Article  ADS  Google Scholar 

  88. A.P. Martynenko, Phys. Rev. A 71, 022506 (2005)

    Article  ADS  Google Scholar 

  89. C. Peset, A. Pineda, arXiv:1612.05206v1 (2016)

  90. K. Pachucki, Phys. Rev. A 53, 2092 (1996)

    Article  ADS  Google Scholar 

  91. J. Beringer et al. (PDG), Phys. Rev. D 86, 01001 (2012)

    Article  Google Scholar 

  92. B. Efron, Am. Stat. 40, 11 (1986)

    Google Scholar 

  93. F. James, A unified approach to understanding statistics, in PHYSTAT2003 (SLAC), Stanford, California (2003)

  94. G. Bohm, G. Zech, Introduction to statistics and data analysis for physicists (Verlag Deutsches Elektronen Synchrotron, 2010)

  95. M. Trassinelli, Nucl. Instrum. Methods B 408, 301 (2017)

    Article  ADS  Google Scholar 

  96. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    Article  ADS  Google Scholar 

  97. J. Skilling, in American institute of physics conference series (2004), Vol. 735, p. 395

  98. M. Theisen, Fakultät für Mathematik, Informatik und Naturwisssenschaften der RWTH Aachen, Diploma thesis, 2013

  99. H. Jeffreys, in The theory of probability, 3rd edn. (Oxford University Press, USA, 1961)

  100. R.E. Kass, A.E. Raftery, J. Stat. Am. Assoc. 90, 773 (1995)

    Article  Google Scholar 

  101. D. Sivia, J. Skilling, in Data analysis: a Bayesian tutorial (Oxford University Press, 2006)

  102. M.R. Stoneking, D. Hartogh, Rev. Sci. Instrum. 68, 914 (1997)

    Article  ADS  Google Scholar 

  103. S. Baker, R.D. Cousins, Nucl. Instrum. Methods Phys. Res. 221, 437 (1984)

    Article  ADS  Google Scholar 

  104. T. Hauschild, M. Jentschel, Nucl. Instrum. Methods A 457, 384 (2001)

    Article  ADS  Google Scholar 

  105. U.C. Bergmann, K. Riisager, Nucl. Instrum. Methods A 489, 444 (2002)

    Article  ADS  Google Scholar 

  106. R. Trotta, Contemp. Phys. 49, 71 (2008)

    Article  ADS  Google Scholar 

  107. D. Madigan, A.E. Raftery, J. Am. Stat. Assoc. 89, 1335 (1994)

    Article  Google Scholar 

  108. P. Mukherjee et al., MNRAS 369, 1725 (2006)

    Article  ADS  Google Scholar 

  109. F. Feroz, M.P. Hobson, MNRAS 384, 449 (2008)

    Article  ADS  Google Scholar 

  110. F. Feroz et al., MNRAS 398, 2009 2049

    Article  ADS  Google Scholar 

  111. F. Feroz, J. Skilling, arXiv:1312.5638v (2013)

  112. F. Feroz et al., arXiv:1306.2144v1 (2013)

  113. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, in Numerical recipies, 2nd edn. (Cambridge University Press, 1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev Gotta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Covita, D.S., Anagnostopoulos, D.F., Fuhrmann, H. et al. Line shape analysis of the Kβ transition in muonic hydrogen. Eur. Phys. J. D 72, 72 (2018). https://doi.org/10.1140/epjd/e2018-80593-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80593-1

Keywords

Navigation