Skip to main content
Log in

Qubit systems subject to unbalanced random telegraph noise: quantum correlations, non-Markovianity and teleportation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We address the dynamics of quantum correlations in a two-qubit system subject to unbalanced random telegraph noise (RTN) and discuss in details the similarities and the differences with the balanced case. We also evaluate quantum non-Markovianity of the dynamical map. Finally, we discuss the effects of unbalanced RTN on teleportation, showing that noise imbalance mitigates decoherence and preserves teleportation fidelity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  2. B.E. Kane, Progr. Phys. 48, 1023 (2000)

    Google Scholar 

  3. D.J. Reilly, NPJ Quantum Inf. 1, 15011 (2015)

    Article  ADS  Google Scholar 

  4. M. Weissman et al., Rev. Mod. Phys. 60, 537 (1988)

    Article  ADS  Google Scholar 

  5. E. Paladino et al., Rev. Mod. Phys. 86, 361 (2014)

    Article  ADS  Google Scholar 

  6. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  7. Y. Nakamura, C.D. Chen, J.S. Tsai, Phys. Rev. Lett. 79, 2328 (1997)

    Article  ADS  Google Scholar 

  8. Y. Nakamura, Yu. A. Pashkin, J.S. Tsai, Nature 398, 786 (1999)

    Article  ADS  Google Scholar 

  9. J.E. Mooij et al., Science 285, 1036 (1999)

    Article  Google Scholar 

  10. J.R. Friedman et al., Nature 406, 43 (2000)

    Article  ADS  Google Scholar 

  11. T. Fujisawa et al., Science 282, 932 (1998)

    Article  ADS  Google Scholar 

  12. J.R. Petta et al., Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  13. Z. Shi et al., Phys. Rev. Lett. 108, 140503 (2012)

    Article  ADS  Google Scholar 

  14. T. Itakura, Y. Tokura, Phys. Rev. B 67, 195320 (2003)

    Article  ADS  Google Scholar 

  15. X. Hu, S. Das Sarma, Phys. Rev. Lett. 96, 100501 (2006)

    Article  ADS  Google Scholar 

  16. J.K. Gamble et al., Phys. Rev. B 86, 035302 (2012)

    Article  ADS  Google Scholar 

  17. A.B. Zorin et al., Phys. Rev. B 53, 13682 (1996)

    Article  ADS  Google Scholar 

  18. V.A. Krupenin et al., J. Appl. Phys. 84, 3212 (1998)

    Article  ADS  Google Scholar 

  19. S.W. Jung et al., Appl. Phys. Lett. 85, 768 (2004)

    Article  ADS  Google Scholar 

  20. R.L. Stoop et al., Phys. Rev. Appl. 7, 014009 (2017)

    Article  ADS  Google Scholar 

  21. C. Kurdak et al., Phys Rev. B 56, 9813 (1997)

    Article  ADS  Google Scholar 

  22. K.S. Ralls et al., Phys. Rev. Lett. 52, 228 (1984)

    Article  ADS  Google Scholar 

  23. M.J. Kirton, M.J. Uren, Adv. Phys. 38, 367 (1989)

    Article  ADS  Google Scholar 

  24. J. Sung-Min et al., IEEE Trans. Electron Devices 58, 67 (2011)

    Article  ADS  Google Scholar 

  25. B. Kaczer et al., Microelectron. Eng. 109, 123 (2013)

    Article  Google Scholar 

  26. R. Black et al., Phys. Rev. Lett. 51, 1476 (1983)

    Article  ADS  Google Scholar 

  27. A. Ludviksson et al., Phys. Rev. Lett. 52, 950 (1984)

    Article  ADS  Google Scholar 

  28. D.J. Reilly, Quantum Inf. 1, 15011 (2015)

    Article  Google Scholar 

  29. L. DiCarlo et al., Nature 460, 240 (2009)

    Article  ADS  Google Scholar 

  30. L. Steffen et al., Nature 500, 319 (2013)

    Article  ADS  Google Scholar 

  31. M. Hirose, P. Cappellaro, Nature 532, 77 (2016)

    Article  ADS  Google Scholar 

  32. C. Benedetti, F. Buscemi, P. Bordone, M.G.A. Paris, Int. J. Quantum Inf. 10, 1241005 (2012)

    Article  MathSciNet  Google Scholar 

  33. C. Benedetti, M.G.A. Paris, S. Maniscalco, Phys. Rev. A 89, 012114 (2014)

    Article  ADS  Google Scholar 

  34. W.K. Wootters, Philos. Trans.: Math. Phys. Eng. Sci. 356, 1717 (1998)

    Article  ADS  Google Scholar 

  35. B. Bylicka, D. Chruściński, S. Maniscalco, Sci. Rep. 4, 5720 (2014)

    Article  ADS  Google Scholar 

  36. D.R. Cox, H.D. Miller, in The Theory of Stochastic Processes (Wiley, New York, 1965), p. 172

  37. R. Fitzhugh, Math. Biosc. 64, 75 (1983)

    Article  MathSciNet  Google Scholar 

  38. T.M. Buehler et al., J. Appl. Phys. 96, 6827 (2004)

    Article  ADS  Google Scholar 

  39. T. Fujisawa, Y. Hirayama, Appl. Phys. Lett. 77, 543 (2000)

    Article  ADS  Google Scholar 

  40. J. Kamioka et al., New J. Phys. 11, 025002 (2009)

    Article  Google Scholar 

  41. J. Bergli, Y.M. Galperin, B.L. Altshuler, Phys. Rev. B 74, 024509 (2006)

    Article  ADS  Google Scholar 

  42. J. Bergli, Y.M. Galperin, B.L. Altshuler, New J. Phys. 11, 025002 (2009)

    Article  ADS  Google Scholar 

  43. J. Fern, Expectations of two-level telegraph noise, https://doi.org/arXiv:quant-ph/0611020

  44. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  45. O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  46. M.B. Plenio, S. Virmani, Quant. Inf. Comput. 7, 1 (2007)

    Google Scholar 

  47. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  48. B.-H. Liu et al., Nat. Phys. 7, 931 (2011)

    Article  Google Scholar 

  49. M.G.A. Paris, Eur. Phys. J. Special Topics 203, 61 (2012)

    Article  ADS  Google Scholar 

  50. E.-M. Laine, H.-P. Breuer, J. Piilo, Sci. Rep. 4, 4620 (2014)

    Article  Google Scholar 

  51. Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, F.-W. Sun, Quantum Inf. 4, 3 (2018)

    Article  Google Scholar 

  52. H.-P. Breuer, E.M. Laine, J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  53. Z. He, J. Zou, L. Li, B. Shao, Phys. Rev. A 83, 012108 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Benedetti.

Additional information

Contribution to the Topical Issue “Quantum Correlations”, edited by Marco Genovese, Vahid Karimipour, Sergei Kulik, and Olivier Pfister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniotti, S., Benedetti, C. & Paris, M.G.A. Qubit systems subject to unbalanced random telegraph noise: quantum correlations, non-Markovianity and teleportation. Eur. Phys. J. D 72, 208 (2018). https://doi.org/10.1140/epjd/e2018-90450-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90450-x

Navigation