Skip to main content
Log in

Low- and high-order nonlinear optical studies of ZnO nanocrystals, nanoparticles, and nanorods

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Variable shapes and sizes of the zinc oxide nanostructures attract the attention due to the peculiarities of their nonlinear optical properties. We report the second-, third-, and high-order nonlinear optical studies of ZnO nanostructures using 800 nm, 40 fs pulses. We analyze the second harmonic generation as a function of the energy of the 800 nm laser pulses irradiating ZnO nanostructures. The studied samples possess the quadratic dependence of the second harmonic yield at the variable intensity of laser radiation. The Z-scan studies of ZnO nanoparticles suspension using 400 nm probe pulses allow determining their nonlinear refractive index (4 × 10−11 cm2 W−1) and nonlinear absorption coefficient (8 × 10−7 cm W−1). We also analyze the optical limiting properties of ZnO nanoparticles suspension. The propagation of femtosecond pulses through the plasmas containing ZnO nanoparticles allowed generation of high harmonics up to the 29th order.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Ganeev, A.I. Ryasnyansky, A.L. Stepanov, T. Usmanov, Phys. Status Solidi B 241, R1 (2004).

    ADS  Google Scholar 

  2. T. Karali, N. Can, L. Valberg, A.L. Stepanov, P.D. Townsend, C. Buchal, R.A. Ganeev, A.I. Ryasnyansky, H.G. Belik, M.L. Jessett, C. Ong, Physica B 363, 88 (2005).

    ADS  Google Scholar 

  3. R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Appl. Phys. B 80, 595 (2005).

    ADS  Google Scholar 

  4. R.A. Ganeev, M. Baba, M. Morita, D. Rau, H. Fujii, A.I. Ryasnyansky, N. Ishizawa, M. Suzuki, H. Kuroda, J. Opt. A 6, 447 (2004).

    ADS  Google Scholar 

  5. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Beilstein J. Nanotechnol. 9, 1050 (2018).

    Google Scholar 

  6. J.A. Alvarado, A. Maldonado, H. Juarez, M. Pacio, J. Nanomater. 9, 903191 (2013).

    Google Scholar 

  7. R. Sreeja, J. John, P.M. Aneesh, M.K. Jayaraj, Opt. Commun. 283, 2908 (2010).

    ADS  Google Scholar 

  8. G. Wang, G.T. Kiehne, G.K.L. Wong, J.B. Kettersond, X. Liu, R.P.H. Chang, Appl. Phys. Lett. 80, 401 (2002).

    ADS  Google Scholar 

  9. J.H. Lin, Y.J. Chen, H.Y. Lin, W.F. Hsieh, J. Appl. Phys. 97, 033526 (2005).

    ADS  Google Scholar 

  10. A.B. Djurišić, Y.H. Leung, Small 2, 944 (2006).

    Google Scholar 

  11. N.S. Han, H.S. Shim, S.M. Park, J.K. Song, Bull. Korean Chem. Soc. 30, 2199 (2009).

    Google Scholar 

  12. B.E. Urban, P. Neogi, K. Senthilkumar, S.K. Rajpurohit, P. Jagadeeshwaran, S. Kim, Y. Fujita, A. Neogi, IEEE J. Sel. Top. Quantum Electron. 18, 1451 (2012).

    ADS  Google Scholar 

  13. H. Linnenbank, Y. Grynko, J. Förstner, S. Linden, Light Sci. Appl. 5, e16013 (2016).

    ADS  Google Scholar 

  14. A. Janotti, V. de Walle, G. Chris, Rep. Prog. Phys. 72, 126501 (2009).

    ADS  Google Scholar 

  15. A.V. Kachynski, A.N. Kuzmin, M. Nyk, I. Roy, P.N. Prasad, J. Phys. Chem. C 112, 10721 (2008).

    Google Scholar 

  16. X.Q. Zhang, Z.K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, J. Phys.: Condens. Matter. 15, 519 (2003).

    Google Scholar 

  17. U.P. Shaik, P.A. Kumar, M.G. Krishna, S.V. Rao, Mater. Res. Express 1, 046201 (2014).

    ADS  Google Scholar 

  18. H.W. Lee, K.M. Lee, S. Lee, K.H. Koh, J.Y. Park, K. Kim, F. Rotermund, Chem. Phys. Lett. 447, 86 (2007).

    ADS  Google Scholar 

  19. X. Si, S. Xiong-Rui, L. Chun, H. Yi-Bo, F. Guo-Jia, W. Qu-Quan, Chin. Phys. B 17, 1291 (2008).

    Google Scholar 

  20. L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, Sci. Adv. Mater. 2, 117 (2010).

    Google Scholar 

  21. K.Y. Lo, Y.J. Huang, J.Y. Huang, Z.C. Feng, W.E. Fenwick, M. Pan, T.I. Ferguson, Appl. Phys. Lett. 90, 161904 (2007).

    ADS  Google Scholar 

  22. R. Prasanth, L.K. van Vugt, D.A.M. Vanmaekelbergh, H.C. Gerritsen, Appl. Phys. Lett. 88, 181501 (2006).

    ADS  Google Scholar 

  23. S.W. Chan, R. Barille, J.M. Nunzi, K.H. Tam, Y.H. Leung, W.K. Chan, A.B. Djurišić, Appl. Phys. B 84, 351 (2006).

    ADS  Google Scholar 

  24. B. Kulyk, Z. Essaidi, J. Luc, Z. Sofiani, G. Boudebs, B. Sahraoui, J. Appl. Phys. 102, 113113 (2007).

    ADS  Google Scholar 

  25. N. Weber, M. Protte, F. Walter, P. Georgi, T. Zentgraf, C. Meier, Phys. Rev. B 95, 205307 (2017).

    ADS  Google Scholar 

  26. S. Ghimire, D.A. Dichiara, E. Sistrunk, P. Agostini, L.F. Dimauro, D.A. Reis, Nat. Phys. 7, 138 (2011).

    Google Scholar 

  27. K. Imasaka, T. Kaji, T. Shimura, S. Ashihara, Opt. Express 26, 21364 (2018).

    ADS  Google Scholar 

  28. S.S. Kurbanov, S.Z. Urolov, Z.S. Shaymardanov, T.W. Kang, J. Lumin. 197, 159 (2018).

    Google Scholar 

  29. S.S. Kurbanov, T.W. Kang, J. Lumin. 158, 99 (2015).

    Google Scholar 

  30. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

    ADS  Google Scholar 

  31. A.V. Uklein, V.V. Multian, G.M. Kuz’michev, R.P. Linnik, V.V. Lisnyak, A.I. Popov, V.Y. Gayvoronsky, Opt. Mater. 84, 738 (2018).

    ADS  Google Scholar 

  32. L.R. Singh, Mater. Sci. Appl. 6, 269 (2015).

    Google Scholar 

  33. B.I. Turko, V.B. Kapustianyk, L.R. Toporovska, V.P. Rudyk, V.S. Tsybulskyi, R.Y. Serkiz, J. Nano- Electron. Phys. 10, 02002 (2018).

    Google Scholar 

  34. J. Biethan, V.P. Sirkeli, L. Considine, D.D. Nedeoglo, D. Pavlidis, H.L. Hartnage, Mater. Sci. Eng. B 177, 594 (2012).

    Google Scholar 

  35. J. Dai, J. Zeng, S. Lan, X. Wan, S. Tie, Opt. Express 21, 10025 (2013).

    ADS  Google Scholar 

  36. L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, B. Krishnan, A. Deepthy, J. Appl. Phys. 103, 033105 (2008).

    ADS  Google Scholar 

  37. M. Ramya, T.K. Nideep, K.R. Vijesh, V.P.N. Nampoori, M. Kailasnath, Opt. Mater. 81, 30 (2018).

    ADS  Google Scholar 

  38. S.M. Mian, S.B. McGee, N. Melikechi, Opt. Commun. 207, 339 (2002).

    ADS  Google Scholar 

  39. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955 (1989).

    ADS  Google Scholar 

  40. X. Liu, S. Guo, H. Wang, L. Hou, Opt. Commun. 197, 431 (2001).

    ADS  Google Scholar 

  41. R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Opt. Soc. Am. B 25, 325 (2008).

    ADS  Google Scholar 

  42. R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Phys. B 41, 045603 (2008).

    ADS  Google Scholar 

  43. R.A. Ganeev, P.A. Naik, H. Singhal, J.A. Chakera, M. Kumar, M.P. Joshi, A.K. Srivastava, P.D. Gupta, Phys. Rev. A 83, 013820 (2011).

    ADS  Google Scholar 

  44. R.A. Ganeev, G.S. Boltaev, V.V. Kim, K. Zhang, A.I. Zvyagin, M.S. Smirnov, O.V. Ovchinnikov, P.V. Redkin, M. Wöstmann, H. Zacharias, C. Guo, Opt. Express 26, 35013 (2018).

    ADS  Google Scholar 

  45. R.A. Ganeev, H. Singhal, P.A. Naik, I.A. Kulagin, P.V. Redkin, J.A. Chakera, M. Tayyab, R.A. Khan, P.D. Gupta, Phys. Rev. A 80, 033845 (2009).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganjaboy S. Boltaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, A., Boltaev, G.S., Ganeev, R.A. et al. Low- and high-order nonlinear optical studies of ZnO nanocrystals, nanoparticles, and nanorods. Eur. Phys. J. D 73, 235 (2019). https://doi.org/10.1140/epjd/e2019-100163-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100163-y

Keywords

Navigation