Skip to main content
Log in

Deformability of poly(amidoamine) dendrimers

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Experimental data indicates that poly(amidoamine) (PAMAM) dendrimers flatten when in contact with a substrate, i.e. they are no longer spherical, but resemble flat disks. In order to better understand the deformation behavior of these branched polymers, a series of atomistic molecular dynamics simulations is performed. The resulting flattened dendrimer conformations are compared to atomic force microscopy (AFM) images of individual dendrimers at air/mica and water/mica interfaces. The ability of the polymers to deform is investigated as a function of dendrimer generation (2-5) and the required energies are calculated. Our modeling results show good agreement with the experimental AFM images, namely that dendrimers are highly flexible and capable of forming multiple interaction sites between most of their branch ends and the substrate. The deformation energy scales with dendrimer generation and does not indicate an increase in stiffness between generations 2 and 5 due to steric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.W. Bosman, H.M. Janssen, E.W. Meijer, Chem. Rev. 99, 1665 (1999).

    Article  Google Scholar 

  2. J. Haensler, F.C. Szoka jr., Bioconjugate Chem. 4, 372 (1993).

    Google Scholar 

  3. A. Bielinska, J.F. Kukowska-Latallo, J. Johnson, D.A. Tomalia, J. Baker jr., Nucleic Acids Res. 24, 2176 (1996).

    Article  Google Scholar 

  4. J.F. Kukowska-Latallo, A.U. Bielinska, J. Johnson, R. Spindler, D.A. Tomalia, J.R. Baker jr., Proc. Natl. Acad. Sci, USA 93, 4897 (1996).

    Article  Google Scholar 

  5. J.P. Thompson, C.-L. Schengrund, Glycoconjugate J. 14, 837 (1997).

    Article  Google Scholar 

  6. N. Malik, E.G. Evagorou, R. Duncan, Anti-Cancer Drugs 10, 767 (1999).

    Google Scholar 

  7. H. Maruyama-Tabata, Y. Harada, T. Matsumura, E. Satoh, F. Cui, M. Iwai, M. Kita, S. Hibi, J. Imanishi, T. Sawada, O. Mazda, Gene Therapy 7, 53 (2000).

    Article  Google Scholar 

  8. A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, K. Patri, T. Thomas, J. Mule, J.R. Baker jr., Pharm. Res. 19, 1310 (2002).

    Article  Google Scholar 

  9. M. Wells, R.M. Crooks, J. Am. Chem. Soc. 118, 3988 (1996).

    Article  Google Scholar 

  10. K. Takada, D.J. Díaz, H.D. Abruña, I. Cuadrado, C. Casado, B. Alonso, M. Morán, J. Losada, J. Am. Chem. Soc. 119, 10763 (1997).

    Article  Google Scholar 

  11. V.V. Tsukruk, F. Rinderspacher, V.N. Bliznyuk, Langmuir 13, 2171 (1997).

    Article  Google Scholar 

  12. V.V. Tsukruk, Adv. Mater. 10, 253 (1998).

    Article  Google Scholar 

  13. V.N. Bliznyuk, F. Rinderspacher, V.V. Tsukruk, Polymer 39, 5249 (1998).

    Article  Google Scholar 

  14. A. Hierlemann, J.K. Campbell, L.A. Baker, R.M. Crooks, A.J. Ricco, J. Am. Chem. Soc. 120, 5323 (1998).

    Article  Google Scholar 

  15. H. Tokuhisa, M. Zhao, L.A. Baker, V.T. Phan, D.L. Dermody, M.E. Garcia, R.F. Peez, R.M. Crooks, T.M. Mayer, J. Am. Chem. Soc. 120, 4492 (1998).

    Article  Google Scholar 

  16. J. Li, L.T. Piehler, D. Qin, J.R. Baker, D.A. Tomalia, Langmuir 16, 5613 (2000).

    Article  Google Scholar 

  17. T.A. Betley, M.M. Banaszak Holl, B.G. Orr, D.R. Swanson, D.A. Tomalia, J.R. Baker jr., Langmuir 17, 2768 (2001).

    Google Scholar 

  18. T.A. Betley, J.A. Hessler, A. Mecke, M.M. Banaszak Holl, B.G. Orr, S. Uppuluri, D.A. Tomalia, J.R. Baker jr., Langmuir 18, 3127 (2002).

    Article  Google Scholar 

  19. T. Müller,, D.G. Yablon, R. Karchner, D. Knapp, M.H. Kleinmann, H. Fang, C.J. Durning, D.A. Tomalia, N.J. Turro, G.W. Flynn, Langmuir 18, 7452 (2002).

    Article  Google Scholar 

  20. M.L. Mansfield, Polymer 37, 3835 (1996).

    Article  Google Scholar 

  21. I. Lee, B.D. Athey, A.W. Wetzel, W. Meixner, J.R. Baker jr., Macromolecules 35, 4510 (2002).

    Article  Google Scholar 

  22. M.F. Ottaviani, F. Montalti, M. Romanelli, N.J. Turro, D.A. Tomalia, J. Phys. Chem. 100, 11033 (1996).

    Article  Google Scholar 

  23. R.C. van Duijvenbode, M. Borkovec, G.J.M. Koper, Polymer 39, 2657 (1998).

    Article  Google Scholar 

  24. S. Lifson, A.T. Hagler, P. Dauber, J. Am. Chem. Soc. 101, 5111 (1979).

    Google Scholar 

  25. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, J. Comp. Chem. 4, 187 (1983).

    Google Scholar 

  26. A.D. MacKerell jr., B. Brooks, C.L. Brooks III, L. Nilsson, B. Roux, Y. Won, M. Karplus, CHARMM: The Energy Function and Its Parameterization with an Overview of the Program, The Encyclopedia of Computational Chemistry, edited by P.v.R. Schleyer et al. Vol. 1 (John Wiley & Sons, Chichester, 1998) pp. 271-277.

  27. C.L. Jackson, H.D. Chanzy, F.P. Booy, B.J. Drake, D.A. Tomalia, B.J. Bauer, E.J. Amis, Macromolecules 31, 6259 (1998).

    Article  Google Scholar 

  28. I.J. Majoros, B. Keszler, S. Woehler, T. Bull, J.R. Baker jr., Macromolecules 36, 5526 (2003).

    Article  Google Scholar 

  29. P.G. de Gennes, H. Hervet, J. Phys. Lett. 44, L351 (1983).

  30. R.L. Lescanec, M. Muthukumar, Macromolecules 23, 2280 (1990).

    Google Scholar 

  31. M.L. Mansfield, L.I. Klushin, J. Phys. Chem. 96, 3994 (1992).

    Google Scholar 

  32. M.L. Mansfield, K.I. Klushin, Macromolecules 26, 4262 (1993).

    Google Scholar 

  33. M. Murat, G.S. Grest, Macromolecules 29, 1278 (1996).

    Article  Google Scholar 

  34. D. Boris, M. Rubinstein, Macromolecules 29, 7251 (1996).

    Article  Google Scholar 

  35. Z.Y. Chen, S.-M. Cui, Macromolecules 29, 7943 (1996).

    Article  Google Scholar 

  36. T.J. Prosa, B.J. Bauer, E.J. Amis, D.A. Tomalia, R. Scherrenberg, J. Polym. Sci. B 35, 2913 (1997).

    Article  Google Scholar 

  37. M.L. Mansfield, Macromolecules 33, 8043 (2000).

    Article  Google Scholar 

  38. G.R. Newkome, J.K. Young, G.R. Baker, R.L. Potter, L. Audoly, D. Cooper, C.D. Weis, Macromolecules 26, 2394 (1993).

    Google Scholar 

  39. S. Uppuluri, S.E. Keinath, D.A. Tomalia, P.R. Dvornic, Macromolecules 31, 4498 (1998).

    Article  Google Scholar 

  40. A.M. Naylor, W.A. Goddard, G.E. Kiefer, D.A. Tomalia, J. Am. Chem. Soc. 111, 2339 (1989).

    Google Scholar 

  41. D.A. Tomalia, A.M. Naylor, W.A. Goddard, Angew. Chem. Int. Ed. Engl. 29, 138 (1990).

    Article  Google Scholar 

  42. P. Miklis, T. Çagin and W.A. Goddard III, J. Am. Chem. Soc. 119, 7458 (1997).

    Article  Google Scholar 

  43. L. Cavallo, F. Fraternali, Chem. Eur. J. 4, 927 (1998).

    Article  Google Scholar 

  44. R. Scherrenberg, B. Coussens, P. van Vliet, G. Edouard, J. Brackman, E. de Brabander, K. Mortensen, Macromolecules 31, 456 (1998).

    Article  Google Scholar 

  45. P. Welch, M. Muthukumar, Macromolecules 31, 5892 (1998).

    Article  Google Scholar 

  46. A. Topp, B.J. Bauer, D.A. Tomalia, E.J. Amis, Macromolecules 32, 7232 (1999).

    Article  Google Scholar 

  47. G. Nisato, R. Ivkov, E.J. Amis, Macromolecules 33, 4172 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Banaszak Holl.

Additional information

PACS:

81.07.Nb Molecular nanostructures - 82.20.Wt Computational modeling; simulation - 68.37.Ps Atomic force microscopy (AFM)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mecke, A., Lee, I., jr., J.R.B. et al. Deformability of poly(amidoamine) dendrimers. Eur. Phys. J. E 14, 7–16 (2004). https://doi.org/10.1140/epje/i2003-10087-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10087-5

Keywords

Navigation