Skip to main content
Log in

Heat transfer between elastic solids with randomly rough surfaces

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study the heat transfer between elastic solids with randomly rough surfaces. We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the non-contact regions. We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.N.J. Persson, J. Phys.: Condens. Matter 18, 7789 (2006)

    Article  ADS  Google Scholar 

  2. For a review of thermal joint resistance models for rough surfaces, see, e.g., M. Bahrami, J.R. Culham, M.M. Yovanovich, G.E. Schneider, Appl. Mech. Rev. 59, 1 (2006)

  3. J.A. Greenwood, J.B.P. Williamson, Proc. R. Soc. London, Ser. A 295, 300 (1966)

    Article  ADS  Google Scholar 

  4. A.W. Bush, R.D. Gibson, T.R. Thomas, Wear 35, 87 (1975)

    Article  Google Scholar 

  5. C. Campana, M.H. Müser, M.O. Robbins, J. Phys.: Condens. Matter 20, 354013 (2008)

    Article  Google Scholar 

  6. G. Carbone, F. Bottiglione, J. Mech. Phys. Solids 56, 2555 (2008)

    Article  MATH  ADS  Google Scholar 

  7. See also Appendix A in B.N.J. Persson, J. Phys.: Condens. Matter 20, 395006 (2008)

    Google Scholar 

  8. B.N.J. Persson, J. Phys.: Condens. Matter 20, 312001 (2008)

    Article  ADS  Google Scholar 

  9. B.N.J. Persson, F. Bucher, B. Chiaia, Phys. Rev. B 65, 184106 (2002)

    Article  ADS  Google Scholar 

  10. B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)

    Article  ADS  Google Scholar 

  11. B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002)

    Google Scholar 

  12. B.N.J. Persson, Phys. Rev. Lett. 99, 125502 (2007)

    Article  ADS  Google Scholar 

  13. C. Yang, B.N.J. Persson, J. Phys.: Condens. Matter 20, 215214 (2008)

    Article  ADS  Google Scholar 

  14. B.N.J. Persson, Surf. Sci. Rep. 61, 201 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  15. B.N.J. Persson, C. Yang, J. Phys.: Condens. Matter 20, 315011 (2008)

    Article  ADS  Google Scholar 

  16. M. Borri-Brunetto, B. Chiaia, M. Ciavarella, Comput. Methods Appl. Mech. Eng. 190, 6053 (2001)

    Article  MATH  Google Scholar 

  17. L. Pei, S. Hyun, J.F. Molinari, M.O. Robbins, J. Mech. Phys. Solids 53, 2385 (2005)

    Article  MATH  ADS  Google Scholar 

  18. B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005)

    Article  ADS  Google Scholar 

  19. B.N.J. Persson, Sliding Friction: Physical Principles and Applications, 2nd edition (Springer, Heidelberg, 2000)

  20. C. Yang, U. Tartaglino, B.N.J. Persson, Eur. Phys. J. E 19, 47 (2006)

    Article  Google Scholar 

  21. S. Hyun, L. Pei, J.F. Molinarie, M.O. Robbins, Phys. Rev. E 70, 026117 (2004)

    Article  ADS  Google Scholar 

  22. Y.F. Mo, K.T. Turner, I. Szlufarska, Nature 457, 1116 (2009)

    Article  ADS  Google Scholar 

  23. J.A. Greenwood, Brit. J. Appl. Phys. 17, 1621 (1966)

    Article  ADS  Google Scholar 

  24. J.R. Barber, Proc. R. Soc. London, Ser. A 459, 53 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. J.F. Archard, Wear 2, 438 (1959)

    Article  Google Scholar 

  26. D. Pires, B. Gotsmann, F. Porro, D. Wiesmann, U. Duerig, A. Knoll, Langmuir 25, 5141 (2009)

    Article  Google Scholar 

  27. A.I. Volokitin, B.N.J. Persson, Rev. Mod. Phys. 79, 1291 (2007)

    Article  ADS  Google Scholar 

  28. K. Joulain, J.P. Mulet, F. Marquier, R. Carminati, J.J. Greffet, Surf. Sci. Rep. 57, 59 (2005)

    Article  ADS  Google Scholar 

  29. D. Segal, A. Nitzan, Chem. Phys. 268, 315 (2001)

    Article  ADS  Google Scholar 

  30. D. Segal, A. Nitzan, Chem. Phys. 281, 235 (2002)

    Article  ADS  Google Scholar 

  31. Y. Selzer, M.A. Cabassi, T.S. Mayer, D.L. Allara, Nanotechnology 15, S483 (2004)

    Article  ADS  Google Scholar 

  32. V. Popov, Kontaktmechanik und Reibung (Springer, Heidelberg, 2009)

  33. M. Bahrami, J.R. Culham, M.M. Yovanovich, Proceedings of the International Mechanical Engineering Congress and Exhibition (IMECE), ASME paper 44097 (Washington, 2003)

  34. D.Z.A. Chen, R. Hamam, M. Soljacic, J.D. Joannopoulos, G. Chen, Appl. Phys. Lett. 90, 181921 (2007)

    Article  ADS  Google Scholar 

  35. M. Bahrami, M.M. Yovanovich, J.R. Culham, J. Thermophys. Heat Transfer 18, 326 (2004)

    Article  Google Scholar 

  36. B.N.J. Persson, J. Phys.: Condens. Matter 20, 315007 (2008)

    Article  ADS  Google Scholar 

  37. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

  38. L. Shi, A. Majumdar, J. Heat Transfer 124, 329 (2002)

    Article  Google Scholar 

  39. C. Yang, B.N.J. Persson, J. Israelachvili, K. Rosenberg, Eur. Phys. Lett. 84, 46004 (2008)

    Article  ADS  Google Scholar 

  40. In ref. PSSR we used $A_{\ab{pl}}/A^0_{\ab{pl}}$ instead of $(A_{\ab{pl}}/A^0_{\ab{pl}})^6$ in the expression for $\bar{C}$, but we have found that the latter (more rapid) cut-off, gives better results: The contact area as a function of magnification, for elastic contact with the latter $\bar{C}$, gives virtually the same result as the calculated (total) contact area using the elastoplastic contact mechanics theory and the original surface roughness power spectrum

  41. B.S. Oh, Y.N. Kim, N.J. Kim, H.Y. Moon, H.W. Park, Tire Sci. Technol. 23, 11 (1995)

    Article  Google Scholar 

  42. H. Yüncü, Heat Mass Transfer 43, 1 (2006)

    Article  ADS  Google Scholar 

  43. M.M. Yavanovich, AIAA-86-1164, presented at 16th Thermo Physics Conference (1981), Palo Alto, CA, USA

  44. As an example, using AFM we have measured the height profile of a polished steel surface over a $10\un{\mu m} \times 10$ m surface area with the resolution $a = 20$nm. From the numerical data we calculated the root-mean-square (rms) roughness $h_{\ab{rms}} \approx 0.1$ m and the rms slope $s \approx 0.6$. Increasing the lateral resolution would increase the slope further since the slope is mainly determined by the short-wavelength roughness

  45. It may be argued that, due to plastic deformation, the slope in (eq:71) should be calculated including only the roughness with wavelength above some cut-off length. However, no discussion of this point was presented in ref. Yovanovich

  46. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)

  47. J. Mc Allen, A.M. Cuitino, V. Sernas, Finite Elements Anal. Design 23, 265 (1996)

    Article  MATH  Google Scholar 

  48. C.O. Popiel, L. Boguslawski, Int. J. Heat Mass Transfer 18, 170 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. J. Persson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, B.N.J., Lorenz, B. & Volokitin, A.I. Heat transfer between elastic solids with randomly rough surfaces. Eur. Phys. J. E 31, 3–24 (2010). https://doi.org/10.1140/epje/i2010-10543-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10543-1

Keywords

Navigation