Skip to main content
Log in

Simulated glass-forming polymer melts: Glass transition temperature and elastic constants of the glassy state

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

By means of molecular-dynamics simulation we study a flexible and a semiflexible bead-spring model for a polymer melt on cooling through the glass transition. Results for the glass transition temperature T g and for the elastic properties of the glassy state are presented. We find that T g increases with chain length N and is for all N larger for the semiflexible model. The N dependence of T g is compared to experimental results from the literature. Furthermore, we characterize the polymer glass below T g via its elastic properties, i.e., via the Lamé coefficients λ and μ. The Lamé coefficients are determined from the fluctuation formalism which allows to split λ and μ into affine (Born term) and nonaffine (fluctuation term) contributions. We find that the fluctuation term represents a substantial correction to the Born term. Since the Born terms for λ and μ are identical, the fluctuation terms are responsible for the different temperature dependence of the Lamé coefficients. While λ decreases linearly on approaching T g from below, the shear modulus μ displays a much stronger decrease near T g. From the present simulation data it is not possible to decide whether μ takes a finite value at T g, as would be expected from mode-coupling theory, or vanishes continuously, as suggested by recent work from replica theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954).

  2. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1997).

  3. D.C. Wallace, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, D. Turnbull, Vol. 25 (Academic Press, New York, 1970) pp. 301--404

  4. D.R. Squire, A.C. Holt, W.G. Hoover, Physica 42, 388 (1969).

    Article  ADS  Google Scholar 

  5. J.R. Ray, M.C. Moody, A. Rahman, Phys. Rev. B 32, 733 (1985).

    Article  ADS  Google Scholar 

  6. O. Farago, Y. Kantor, Phys. Rev. E 61, 2478 (2000).

    Article  ADS  Google Scholar 

  7. J.F. Lutsko, J. Appl. Phys. 65, 2991 (1989).

    Article  ADS  Google Scholar 

  8. K. Yoshimoto, T.S. Jain, K. Van Workum, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 93, 175501 (2004).

    Article  ADS  Google Scholar 

  9. J.L. Barrat, J.N. Roux, J.P. Hansen, M.L. Klein, Europhys. Lett. 7, 707 (1988).

    Article  ADS  Google Scholar 

  10. C. Maloney, A. Lemaître, Phys. Rev. Lett. 93, 195501 (2004).

    Article  ADS  Google Scholar 

  11. A. Tanguy, J.P. Wittmer, F. Léonforte, J.L. Barrat, Phys. Rev. B 66, 174205 (2002).

    Article  ADS  Google Scholar 

  12. F. Léonforte, R. Boissière, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. B 72, 224206 (2005).

    Article  ADS  Google Scholar 

  13. F. Léonforte, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. Lett. 97, 055501 (2006).

    Article  ADS  Google Scholar 

  14. M. Tsamados, A. Tanguy, C. Goldenberg, J.L. Barrat, Phys. Rev. E 80, 026112 (2009).

    Article  ADS  Google Scholar 

  15. G.J. Papakonstantopoulos, R.A. Riggleman, J.L. Barrat, J.J. de Pablo, Phys. Rev. E 77, 041502 (2008).

    Article  ADS  Google Scholar 

  16. K. Van Workum, J.J. de Pablo, Phys. Rev. E 67, 011505 (2003).

    Article  ADS  Google Scholar 

  17. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. B 44, 2951 (2006).

    Article  Google Scholar 

  18. S. Peter, S. Napolitano, H. Meyer, M. Wübbenhorst, J. Baschnagel, Macromolecules 41, 7729 (2008).

    Article  ADS  Google Scholar 

  19. M. Kröger, Phys. Rep. 390, 453 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Auhl, R. Everaers, G.S. Grest, K. Kremer, S.J. Plimpton, J. Chem. Phys. 119, 12718 (2003).

    Article  ADS  Google Scholar 

  21. R. Faller, F. Müller-Plathe, A. Heuer, Macromolecules 33, 6602 (2000).

    Article  ADS  Google Scholar 

  22. R. Faller, A. Kolb, F. Müller-Plathe, Phys. Chem. Chem. Phys. 1, 2071 (1999).

    Article  Google Scholar 

  23. K.G. Honnell, J.G. Curro, K.S. Schweizer, Macromolecules 23, 3496 (1990).

    Article  ADS  Google Scholar 

  24. A.R. Khokhlov, A.N. Semenov, Macromolecules 19, 373 (1986).

    Article  ADS  Google Scholar 

  25. W. Paul, G.D. Smith, Rep. Prog. Phys. 67, 1117 (2004).

    Article  ADS  Google Scholar 

  26. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

  27. An idea of how fast the simulated cooling process is may be obtained by converting our cooling rates to SI units. If we use the typical values ε LJ/k B ≈ 400 K and 2 × 10−11 s [68], we find for the slowest rate the estimate Γ = 5 × 10−6 (ε LJ/k B)/τ LJ ≈ 108 K/s. This value is at least an order of magnitude smaller than typical rates of atomistic simulations, e.g. for polystyrene[34] or SiO2 [30], but considerably exceeds the rates commonly employed in experiments which range from 10−3 K/s to 10 K/s [38]. However, this disparity does not necessarily invalidate simulation studies of the glass transition, as suggested for instance by the work of Soldera and Metatla who find a linear relationship between experimental T g values and numerical results from atomistic simulations of various vinylic polymers [77].

  28. J. Buchholz, W. Paul, F. Varnik, K. Binder, J. Chem. Phys. 117, 7364 (2002).

    Article  ADS  Google Scholar 

  29. K. Vollmayr, W. Kob, K. Binder, J. Chem. Phys. 105, 4714 (1996).

    Article  ADS  Google Scholar 

  30. K. Vollmayr, W. Kob, K. Binder, J. Chem. Phys. 54, 15808 (1996).

    Google Scholar 

  31. W. Kob, J.L. Barrat, Eur. Phys. J. B 13, 319 (2000).

    Article  ADS  Google Scholar 

  32. M. Warren, J. Rottler, Phys. Rev. E 76, 031802 (2007).

    Article  ADS  Google Scholar 

  33. G.B. McKenna, in Comprehensive Polymer Science, edited by C. Booth, C. Price, Vol. 2 (Pergamon, New York, 1986) pp. 311--362

  34. A.V. Lyulin, N.K. Balabaev, M.A.J. Michels, Macromolecules 36, 8574 (2003).

    Article  ADS  Google Scholar 

  35. K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Article  ADS  Google Scholar 

  36. S.K. Sukumaran, G.S. Grest, K. Kremer, R. Everaers, J. Polym. Sci. B 43, 917 (2005).

    Article  Google Scholar 

  37. G. Strobl, The Physics of Polymers: Concepts for Understanding Their Structures and Behavior (Springer, Berlin-Heidelberg, 1997).

  38. R. Brüning, K. Samwer, Phys. Rev. B 46, 11318 (1992).

    Article  ADS  Google Scholar 

  39. J.L. Barrat, J. Baschnagel, A. Lyulin, Soft Matter 6, 3420 (2010).

    Article  ADS  Google Scholar 

  40. F. Varnik, PhD thesis, Johannes Gutenberg-Universität Mainz (2000) (available from http://archimed.uni-mainz.de/pub/2001/0007).

  41. J. Hintermeyer, A. Herrmann, R. Kahlau, C. Goiceanu, E.A. Rössler, Macromolecules 41, 9335 (2008).

    Article  ADS  Google Scholar 

  42. A.L. Agapov, A.P. Sokolov, Macromolecules 42, 2877 (2009).

    Article  ADS  Google Scholar 

  43. M. Durand, H. Meyer, O. Benzerara, J. Baschnagel, O. Vitrac, J. Chem. Phys. 132, 194902 (2010).

    Article  ADS  Google Scholar 

  44. B. Lobe, J. Baschnagel, J. Chem. Phys. 101, 1616 (1994).

    Article  ADS  Google Scholar 

  45. T.G. Fox, P.J. Flory, J. Polym. Sci. 14, 315 (1954).

    Article  ADS  Google Scholar 

  46. T.G. Fox, S. Loshaek, J. Polym. Sci. 15, 371 (1955).

    Article  ADS  Google Scholar 

  47. J. Dudowicz, K.F. Freed, J.F. Douglas, Adv. Chem. Phys. 137, 125 (2008).

    Article  Google Scholar 

  48. A. Rudin, D. Burgin, Polymer 16, 291 (1975).

    Article  Google Scholar 

  49. J.M.G. Cowie, P.M. Toporowski, Eur. Polym. J. 4, 621 (1968).

    Article  Google Scholar 

  50. G. Pezzin, F. Zilio-Grandi, P. Sanmartin, Eur. Polym. J. 6, 1053 (1970).

    Article  Google Scholar 

  51. M.V. Jarić, U. Mohanty, Phys. Rev. B 37, 4441 (1988).

    Article  ADS  Google Scholar 

  52. N. Sushko, P. van der Schoot, M.A.J. Michels, J. Chem. Phys. 118, 6594 (2003).

    Article  ADS  Google Scholar 

  53. R. Zwanzig, R.D. Mountain, J. Chem. Phys. 43, 4464 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  54. J.S. Rowlinson, Liquids and Liquid Mixtures (Butterworths, London, 1959).

  55. H. Yoshino, M. Mézard, Phys. Rev. Lett. 105, 015504 (2010).

    Article  ADS  Google Scholar 

  56. G. Parisi, F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).

    Article  ADS  Google Scholar 

  57. B. Schnell, PhD thesis, Université de Strasbourg (2006) (available from http://eprints-scd-ulp.u-strasbg.fr:8080/545/)

  58. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Vol. 7 (Elsevier, Amsterdam, 1986).

  59. J. Zhang, B.D. Todd, Phys. Rev. E 69, 031111 (2004).

    Article  ADS  Google Scholar 

  60. R.A. Riggleman, J.J. de Pablo, J. Chem. Phys. 128, 224504 (2008).

    Article  ADS  Google Scholar 

  61. R. Yamamoto, A. Onuki, J. Chem. Phys. 117, 2359 (2002).

    Article  ADS  Google Scholar 

  62. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2009).

  63. F. Varnik, O. Henrich, Phys. Rev. B 73, 174209 (2006).

    Article  ADS  Google Scholar 

  64. G. Szamel, EPL 91, 56004 (2010).

    Article  ADS  Google Scholar 

  65. K. Chen, K.S. Schweizer, J. Chem. Phys. 126, 014904 (2007).

    Article  ADS  Google Scholar 

  66. K. Chen, E.J. Saltzman, K.S. Schweizer, J. Phys.: Condens. Matter 21, 50301 (2009).

    Google Scholar 

  67. M. Fuchs, M.R. Mayr, Phys. Rev. E 60, 5742 (1999).

    Article  ADS  Google Scholar 

  68. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).

    Article  ADS  Google Scholar 

  69. P.H. Mott, J.R. Dorgan, C.M. Roland, J. Sound Vib. 312, 572 (2008).

    Article  ADS  Google Scholar 

  70. M. Bernabei, A.J. Moreno, J. Colmenero, Phys. Rev. Lett. 101, 255701 (2008).

    Article  ADS  Google Scholar 

  71. M. Bernabei, A.J. Moreno, J. Colmenero, J. Chem. Phys. 131, 204502 (2009).

    Article  ADS  Google Scholar 

  72. S. Krushev, W. Paul, G.D. Smith, Macromolecules 35, 4198 (2002).

    Article  ADS  Google Scholar 

  73. J.V. Heffernan, J. Budzien, A.T. Wilson, R.J. Baca, V.J. Aston, F. Avila, J.D. McCoy, D.B. Adolf, J. Chem. Phys. 126, 184904 (2007).

    Article  ADS  Google Scholar 

  74. S.H. Chong, M. Fuchs, Phys. Rev. Lett. 88, 185702 (2002).

    Article  ADS  Google Scholar 

  75. J. Dudowicz, K.F. Freed, J.F. Douglas, J. Phys. Chem. B 109, 21285 (2005).

    Article  Google Scholar 

  76. M. Durand, PhD thesis, Université de Strasbourg (2010).

  77. A. Soldera, N. Metatla, Phys. Rev. E 74, 061803 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Baschnagel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, B., Meyer, H., Fond, C. et al. Simulated glass-forming polymer melts: Glass transition temperature and elastic constants of the glassy state. Eur. Phys. J. E 34, 97 (2011). https://doi.org/10.1140/epje/i2011-11097-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11097-4

Keywords

Navigation