Skip to main content
Log in

Elasticity and mechanical instability of charged lipid bilayers in ionic solutions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We use coarse-grained Monte Carlo simulations to study the elastic properties of charged membranes in solutions of monovalent and pentavalent counterions. The simulation results of the two cases reveal trends opposite to each other. The bending rigidity and projected area increase with the membrane charge density for monovalent counterions, while they decrease for the pentavalent ions. These observations can be related to the counterion screening of the lipid charges. While the monovalent counterions only weakly screen the Coulomb interactions, which implies a repulsive Coulomb system, the multivalent counterions condense on the membrane and, through spatial charge correlations, make the effective interactions due to the charged lipids attractive. The differences in the elastic properties of the charged membranes in monovalent and multivalent counterion solutions are reflected in the mechanisms leading to their mechanical instability at high charge densities. In the former case, the membranes develop pores to relieve the electrostatic tensile stresses, while in the latter case, the membrane exhibits large wavelength bending instability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts, Molecular Biology of the Cell (Garland Science, New York, 2002)

  2. W. Helfrich, Z. Naturforsch. 28C, 693 (1973)

    Google Scholar 

  3. O. Farago, P. Pincus, J. Phys. Chem. 120, 2934 (2004)

    Google Scholar 

  4. For a comprehensive review see: D. Andelman, in Structure and Dynamics of Membranes, edited by R. Lipowsky, E. Sackmann (Elsevier, Amsterdam, 1995)

  5. A.W.C. Lau, P. Pincus, Phys. Rev. Lett. 81, 1338 (1998)

    Article  ADS  Google Scholar 

  6. T.T. Nguyen, I. Rouzina, B.I. Shklovskii, Phys. Rev. E 60, 7032 (1999)

    Article  ADS  Google Scholar 

  7. R.R. Netz, Phys. Rev. E 64, 051401 (2001)

    Article  ADS  Google Scholar 

  8. Y.W. Kim, W. Sung, Europhys. Lett. 58, 147 (2002)

    Article  ADS  Google Scholar 

  9. A.W.C. Lau, D.B. Lukatsky, P. Pincus, S.A. Safran, Phys. Rev. E 65, 051502 (2002)

    Article  ADS  Google Scholar 

  10. A.G. Moreira, R.R. Netz, Eur. Phys, J. E 8, 33 (2002)

    Google Scholar 

  11. I. Rouzina, V.A. Bloomfield, J. Phys. Chem. 100, 9977 (1996)

    Google Scholar 

  12. N. Grøn, Phys. Rev. Lett. 78, 2477 (1997)

    Article  ADS  Google Scholar 

  13. N. Grøn, Physica A 261, 74 (1998)

    Article  ADS  Google Scholar 

  14. C.C. Fleck, R.R. Netz, Phys. Rev. Lett. 95, 128101 (2005)

    Article  ADS  Google Scholar 

  15. E. Lindhal, O. Edholm, Biophys. J. 79, 426 (2000)

    Article  Google Scholar 

  16. S.J. Marrink, A.E. Mark, J. Phys. Chem. 105, 6122 (2001)

    Google Scholar 

  17. O. Farago, J. Chem. Phys. 119, 596 (2003)

    ADS  Google Scholar 

  18. F. Brown, Annu. Rev. Phys. Chem. 59, 685 (2008)

    ADS  Google Scholar 

  19. I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005) (we slightly modified the model to avoid occasional escape of lipids from the bilayer)

    Article  ADS  Google Scholar 

  20. N. Grønbech-Jensen, G. Hummer, K.M. Beardmore, Mol. Phys. 92, 941 (1997)

    Article  ADS  Google Scholar 

  21. R.J. Mashl, N. Grønbech-Jensen, J. Chem. Phys. 109, 4617 (1998)

    ADS  Google Scholar 

  22. O. Farago, N. Grønbech-Jensen, Biophys. J. 92, 3228 (2007)

    Article  Google Scholar 

  23. O. Farago, J. Chem. Phys. 128, 184105 (2008)

    ADS  Google Scholar 

  24. H.I. Petrach, S. Tristram-Nagle, K. Gawrisch, D. Harries, V.A. Persegian, J.F. Nagle, Biophys. J. 86, 1574 (2004)

    Article  ADS  Google Scholar 

  25. P. Mukhopadhyay, L. Monticelli, D.P. Tieleman, Biophys. J. 86, 1601 (2004)

    Article  ADS  Google Scholar 

  26. W. Rawicz, K.C. Olbrich, T. McIntosh. D. Needham, E. Evans, Biophys. J. 79, 328 (2000)

    Article  Google Scholar 

  27. S. Buyukdagli, M. Manghi, J. Palmeri, Phys. Rev. E 81, 041601 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Farago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avital, Y., Grønbech-Jensen, N. & Farago, O. Elasticity and mechanical instability of charged lipid bilayers in ionic solutions. Eur. Phys. J. E 37, 69 (2014). https://doi.org/10.1140/epje/i2014-14069-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14069-2

Keywords

Navigation