Skip to main content
Log in

Shear strength of wet granular materials: Macroscopic cohesion and effective stress

Discrete numerical simulations, confronted to experimental measurements

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value \(\mu\simeq 0.09\), identified from the behaviour of the dry material. Shear resistance and solid fraction \(\Phi_{S}\) are recorded as functions of the reduced pressure \(P^{\ast}\), which, defined as \(P^{\ast}=a^{2}\sigma_{22}/F_{0}\), compares stress \(\sigma_{22}\), applied in the velocity gradient direction, to the tensile strength \(F_{0}\) of the capillary bridges between grains of diameter a, and characterizes cohesion effects. The simplest Mohr-Coulomb relation with \(P^{\ast}\)-independent cohesion c applies as a good approximation for large enough \(P^{\ast}\) (typically \(P^{\ast}\ge 2\). Numerical simulations extend to different values of μ and, compared to experiments, to a wider range of \(P^{\ast}\). The assumption that capillary stresses act similarly to externally applied ones onto the dry granular contact network (effective stresses) leads to very good (although not exact) predictions of the shear strength, throughout the numerically investigated range \(P^{\ast}\ge 0.5\) and \(0.05\le\mu\le 0.25\). Thus, the internal friction coefficient \(\mu^{\ast}_{0}\) of the dry material still relates the contact force contribution to stresses, \(\sigma^{{\rm cont}}_{12}=\mu^{\ast}_{0} \sigma^{{\rm cont}}_{22}\), while the capillary force contribution to stresses, \( \underline{\underline{{\sigma}}}^{{\rm cap}}\), defines a generalized Mohr-Coulomb cohesion c, depending on \(P^{\ast}\) in general. c relates to \(\mu^{\ast}_0\) , coordination numbers and capillary force network anisotropy. c increases with liquid content through the pendular regime interval, to a larger extent, the smaller the friction coefficient. The simple approximation ignoring capillary shear stress \(\sigma^{{\rm cap}}_{12}\) (referred to as the Rumpf formula) leads to correct approximations for the larger saturation range within the pendular regime, but fails to capture the decrease of cohesion for smaller liquid contents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Mitarai, F. Nori, Adv. Phys. 55, 1 (2006)

    Article  ADS  Google Scholar 

  2. P. Pierrat, H.S. Caram, Powder Technol. 91, 83 (1997)

    Article  Google Scholar 

  3. T. Gröger, U. Tüzün, D. Heyes, Powder Technol. 133, 203 (2003)

    Article  Google Scholar 

  4. P. Pierrat, D.K. Agrawal, H.S. Caram, Powder Technol. 99, 220 (1998)

    Article  Google Scholar 

  5. V. Richefeu, M.S. El Youssoufi, F. Radjai, Phys. Rev. E 73, 051304 (2006)

    Article  ADS  Google Scholar 

  6. F. Soulié, M.S. El Youssoufi, F. Cherblanc, C. Saix, Eur. Phys. J. E 21, 349 (2006)

    Article  Google Scholar 

  7. L. Scholtès, B. Chareyre, F. Nicot, F. Darve, Int. J. Eng. Sci. 47, 64 (2009)

    Article  Google Scholar 

  8. L. Scholtès, P.-Y. Hicher, F. Nicot, B. Chareyre, F. Darve, Int. J. Numer. Anal. Methods Geomech. 33, 1289 (2009)

    Article  Google Scholar 

  9. S. Khamseh, J.-N. Roux, F. Chevoir, Phys. Rev. E 92, 022201 (2015)

    Article  ADS  Google Scholar 

  10. Z. Shen, M. Jiang, C. Thornton, Granular Matter 18, 37 (2016)

    Article  Google Scholar 

  11. S. Roy, S. Luding, T. Weinhart, New J. Phys. 19, 043014 (2017)

    Article  ADS  Google Scholar 

  12. M.M. Kohonen, D. Geromichalos, M. Scheel, C. Schier, S. Herminghaus, Physica A 339, 7 (2004)

    Article  ADS  Google Scholar 

  13. S. Herminghaus, Adv. Phys. 54, 221 (2005)

    Article  ADS  Google Scholar 

  14. M. Scheel, R. Seeman, M. Brinkmann, M. Di Michiel, A. Scheppard, B. Breidenbach, S. Herminghaus, Nat. Mater. 7, 189 (2008)

    Article  ADS  Google Scholar 

  15. F. Radjai, F. Dubois (Editors), Discrete-Element Modeling of Granular Materials (Wiley, 2011)

  16. G. Lian, C. Thornton, M.J. Adams, J. Colloid Interface Sci. 161, 138 (1993)

    Article  ADS  Google Scholar 

  17. C.D. Willett, M.J. Adams, S.A. Johnson, J.P.K. Seville, Langmuir 16, 9396 (2000)

    Article  Google Scholar 

  18. O. Pitois, P. Moucheront, X. Chateau, J. Colloid Interface Sci. 231, 26 (2000)

    Article  ADS  Google Scholar 

  19. H. Rumpf, Chem.-Ing.-Tech. 42, 538 (1970)

    Article  Google Scholar 

  20. F. Radjai, V. Richefeu, Philos. Trans. R. Soc. A 367, 5123 (2009)

    Article  ADS  Google Scholar 

  21. B. Chareyre, Phys. Rev. E 96, 016901 (2017)

    Article  ADS  Google Scholar 

  22. A. Fall, G. Ovarlez, D. Hautemayou, C. Mézière, J.-N. Roux, F. Chevoir, J. Rheol. 59, 1065 (2015)

    Article  ADS  Google Scholar 

  23. D.M. Wood, Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press, 1990)

  24. B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media: Between Fluid and Solid (Cambridge University Press, Cambridge, UK, 2013)

  25. V.-D. Than, S. Khamseh, A.-M. Tang, J.-M. Pereira, F. Chevoir, J.-N. Roux, ASCE J. Eng. Mech. 143, C4016001 (2017)

    Article  Google Scholar 

  26. I. Agnolin, J.-N Roux, Phys. Rev. E 76, 061302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. J.-N. Roux, F. Chevoir, Dimensional Analysis and Control Parameters, in Discrete-Element Modeling of Granular Materials (Wiley, 2011) Chapt. 8, pp. 199--232

  28. D. Maugis, J. Adhes. Sci. Technol. 1, 105 (1987)

    Article  Google Scholar 

  29. P.-E. Peyneau, J.-N. Roux, Phys. Rev. E 78, 011307 (2008)

    Article  ADS  Google Scholar 

  30. J. Christoffersen, M.M. Mehrabadi, S. Nemat-Nasser, J. Appl. Mech. 48, 339 (1981)

    Article  ADS  Google Scholar 

  31. P. Rognon, J.-N. Roux, D. Wolf, M. Naaim, F. Chevoir, Europhys. Lett. 74, 644 (2006)

    Article  ADS  Google Scholar 

  32. T. Hatano, Phys. Rev. E 75, 060301(R) (2007)

    Article  ADS  Google Scholar 

  33. Y. Forterre, O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)

    Article  ADS  Google Scholar 

  34. F. Chevoir, J.-N. Roux, F. da Cruz, P.G. Rognon, G. Koval, Powder Technol. 190, 264 (2009)

    Article  Google Scholar 

  35. E. Azéma, F. Radjai, Phys. Rev. Lett. 112, 078001 (2014)

    Article  ADS  Google Scholar 

  36. N. Berger, É. Azéma, J.-F. Douce, F. Radjaï, EPL 112, 64004 (2015)

    Article  ADS  Google Scholar 

  37. F. Boyer, É. Guazzelli, O. Pouliquen, Phys. Rev. Lett. 107, 188301 (2011)

    Article  ADS  Google Scholar 

  38. D. Kadau, G. Bartels, L. Brendel, D.E. Wolf, Phase Trans. 76, 315 (2003)

    Article  Google Scholar 

  39. F.A. Gilabert, J.-N. Roux, A. Castellanos, Phys. Rev. E 78, 031305 (2008)

    Article  ADS  Google Scholar 

  40. D. Kadau, G. Bartels, L. Brendel, D.E. Wolf, Comput. Phys. Commun. 147, 190 (2002)

    Article  ADS  Google Scholar 

  41. A. Lemaitre, J.-N. Roux, F. Chevoir, Rheol. Acta 48, 925 (2009)

    Article  Google Scholar 

  42. M. Badetti, J.-N. Roux, P. Aimedieu, S. Rodts, F. Chevoir, A. Fall, Rheology and microstructure of unsaturated granular materials: Experiments and simulations, to be published in J. Rheol. (2018)

  43. F. Soulié, M.S. El Youssoufi, F. Cherblanc, C. Saix, Eur. Phys. J. E 21, 349 (2006)

    Article  Google Scholar 

  44. S. Khamseh, J.-N. Roux, F. Chevoir, Phys. Rev. E 96, 016902 (2017)

    Article  ADS  Google Scholar 

  45. T. Aste, M. Saadatfar, T.J. Senden, Phys. Rev. E 71, 061302 (2005)

    Article  ADS  Google Scholar 

  46. I. Agnolin, J.-N. Roux, Phys. Rev. E 76, 061304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. L. La Ragione, V. Magnanimo, Phys. Rev. E 85, 031304 (2012)

    Article  ADS  Google Scholar 

  48. M.H. Khalili, J.-N. Roux, J.-M. Pereira, S. Brisard, M. Bornert, Phys. Rev. E 95, 032908 (2017)

    Article  ADS  Google Scholar 

  49. L. Rothenburg, R.J. Bathurst, Géotechnique 39, 601 (1989)

    Article  Google Scholar 

  50. P.-E. Peyneau, J.-N. Roux, Phys. Rev. E 78, 041307 (2008)

    Article  ADS  Google Scholar 

  51. F. Radjaï, J.-Y. Delenne, E. Azéma, S. Roux, Granular Matter 14, 259 (2012)

    Article  Google Scholar 

  52. O.I. Imole, M. Wojtkowski, V. Magnanimo, S. Luding, Phys. Rev. E 89, 042210 (2014)

    Article  ADS  Google Scholar 

  53. M.H. Khalili, J.-N. Roux, J.-M. Pereira, S. Brisard, M. Bornert, Phys. Rev. E 95, 032907 (2017)

    Article  ADS  Google Scholar 

  54. J.-Y. Delenne, V. Richefeu, F. Radjaï, J. Fluid Mech. 762, R5 (2015)

    Article  Google Scholar 

  55. V. Richefeu, F. Radjai, J.-Y. Delenne, Comput. Geotech. 80, 353 (2016)

    Article  Google Scholar 

  56. R. Mani, D. Kadau, D. Or, H.J. Herrmann, Phys. Rev. Lett. 109, 248001 (2012)

    Article  ADS  Google Scholar 

  57. J.-F. Bruchon, J.-M. Pereira, M. Vandamme, N. Lenoir, P. Delage, M. Bornert, Granular Matter 15, 783 (2013)

    Article  Google Scholar 

  58. T. Aste, M. Saadatfar, A. Sakellariou, T.J. Senden, Physica A 339, 16 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  59. T. Aste, M. Saadatfar, T.J. Senden, Phys. Rev. E 71, 061302 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Noël Roux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badetti, M., Fall, A., Chevoir, F. et al. Shear strength of wet granular materials: Macroscopic cohesion and effective stress. Eur. Phys. J. E 41, 68 (2018). https://doi.org/10.1140/epje/i2018-11677-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11677-8

Keywords

Navigation