Skip to main content
Log in

Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper, we explore the effect of a finite surface charge mobility on the interfacial transport: conductance, streaming currents, electro- and diffusio-osmotic flows. We first show that the surface charge mobility modifies the hydrodynamic boundary condition for the fluid, which introduces a supplementary term depending on the applied electric field. In particular, the resulting slip length is found to decrease inversely with the surface charge. We then derive expressions for the various transport mobilities, highlighting that the surface charge mobility merely moderates the amplification effect of interfacial slippage, to the noticeable exception of diffusio-osmosis and surface conductance. Our calculations, obtained within Poisson-Boltzmann framework, highlight the importance of non-linear electrostatic contributions to predict the small concentration/large charge limiting regimes for the transport mobilities. We discuss these predictions in the context of recent electrokinetic experiments with carbon nanotubes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Hunter, Foundations of Colloid Science (Oxford University Press, New York, 1991)

  2. L. Bocquet, E. Charlaix, Chem. Soc. Rev. 39, 1073 (2010)

    Article  Google Scholar 

  3. A. Siria, M.L. Bocquet, L. Bocquet, Nat. Rev. Chem. 1, 0091 (2017)

    Article  Google Scholar 

  4. L. Joly, C. Ybert, E. Trizac, L. Bocquet, Phys. Rev. Lett. 93, 257805 (2004)

    Article  ADS  Google Scholar 

  5. L. Joly, C. Ybert, E. Trizac, L. Bocquet, J. Chem. Phys. 125, 204716 (2006)

    Article  ADS  Google Scholar 

  6. S. Balme, F. Picaud, M. Manghi, J. Palmeri, M. Bechelany, S. Cabello-Aguilar, A. Abou-Chaaya, P. Miele, E. Balanzat, J.M. Janot, Sci. Rep. 5, 10135 (2015)

    Article  ADS  Google Scholar 

  7. D. Rankin, D.M. Huang, Langmuir 32, 3420 (2016)

    Article  Google Scholar 

  8. D.M. Huang, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Langmuir 24, 1442 (2008)

    Article  Google Scholar 

  9. D.J. Bonthuis, R.R. Netz, Langmuir 28, 16049 (2012)

    Article  Google Scholar 

  10. D.J. Bonthuis, Y. Uematsu, R.R. Netz, Philos. Trans. R. Soc. A 374, 20150033 (2016)

    Article  ADS  Google Scholar 

  11. E. Secchi, A. Niguès, L. Jubin, A. Siria, L. Bocquet, Phys. Rev. Lett. 116, 154501 (2016)

    Article  ADS  Google Scholar 

  12. P.M. Biesheuvel, M.Z. Bazant, Phys. Rev. E 94, 050601 (2016)

    Article  ADS  Google Scholar 

  13. Y. Uematsu, R.R. Netz, L. Bocquet, D. Bonthuis, J. Phys. Chem. B 122, 2992 (2018)

    Article  Google Scholar 

  14. B.L. Werkhoven, J.C. Everts, S. Samin, R. van Roij, Phys. Rev. Lett. 120, 264502 (2018)

    Article  ADS  Google Scholar 

  15. C. Fleck, R.R. Netz, H.H. von Grünberg, Biophys. J. 82, 76 (2002)

    Article  Google Scholar 

  16. Y. Avni, D. Andelmann, R. Podgornik, Curr. Opin. Electrochem. 13, 70 (2018)

    Article  Google Scholar 

  17. L. Joly, F. Detcheverry, A.-L. Biance, Phys. Rev. Lett. 113, 088301 (2014)

    Article  ADS  Google Scholar 

  18. J. Lyklema, Colloids Surf. A 92, 42 (1994)

    Article  Google Scholar 

  19. E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet, Nature 537, 210 (2016)

    Article  ADS  Google Scholar 

  20. B. Grosjean, M.-L. Bocquet, R. Vuilleumier, submitted to Nat. Commun. (2018)

  21. T. Mouterde, to be published in Nature (2018)

  22. D. Andelman, Handbook of Biological Physics, Vol. 1 (North-Holland, 1995) pp. 603--642.

  23. S. Levine, J.R. Marriott, K. Robinson, J. Chem. Soc., Faraday Trans. 2, 711 (1975)

    Google Scholar 

  24. J.J. Bikerman, Z. Phys. Chem. A 163, 378 (1933)

    Google Scholar 

  25. D.C. Prieve, J.L. Anderson, J.P. Ebel, M.E. Lowell, J. Fluid Mech. 148, 247 (1984)

    Article  ADS  Google Scholar 

  26. J.C. Fair, J.F. Osterle, J. Chem. Phys. 54, 3307 (1971)

    Article  ADS  Google Scholar 

  27. A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. Purcell, L. Bocquet, Nature 494, 455 (2013)

    Article  ADS  Google Scholar 

  28. D.C. Grahame, Chem. Rev. 3, 441 (1947)

    Article  Google Scholar 

  29. M. Manghi, J. Palmeri, Y. Khadija, F. Henn, V. Jourdain, Phys. Rev. E 98, 012605 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydéric Bocquet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouterde, T., Bocquet, L. Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes. Eur. Phys. J. E 41, 148 (2018). https://doi.org/10.1140/epje/i2018-11760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11760-2

Keywords

Navigation