Skip to main content

Advertisement

Log in

Optimizing airborne wind energy with reinforcement learning

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Airborne wind energy is a lightweight technology that allows power extraction from the wind using airborne devices such as kites and gliders, where the airfoil orientation can be dynamically controlled in order to maximize performance. The dynamical complexity of turbulent aerodynamics makes this optimization problem unapproachable by conventional methods such as classical control theory, which rely on accurate and tractable analytical models of the dynamical system at hand. Here we propose to attack this problem through reinforcement learning, a technique that—by repeated trial-and-error interactions with the environment—learns to associate observations with profitable actions without requiring prior knowledge of the system. We show that in a simulated environment reinforcement learning finds an efficient way to control a kite so that it can tow a vehicle for long distances. The algorithm we use is based on a small set of intuitive observations and its physically transparent interpretation allows to describe the approximately optimal strategy as a simple list of manoeuvring instructions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. U. Ahrens, M. Diehl, R. Schmehl, Airborne Wind Energy, Green Energy and Technology (Springer, 2013). https://doi.org/10.1007/978-3-642-39965-7

    Book  Google Scholar 

  2. P. Bechtle, M. Schelbergen, R. Schmehl, U. Zillmann, S. Watson, Renew. Energy 141, 1103 (2019). https://doi.org/10.1016/j.renene.2019.03.118

    Article  Google Scholar 

  3. A. Cherubini, A. Papini, R. Vertechy, M. Fontana, Renew. Sustain. Energy Rev. 51, 1461 (2015). https://doi.org/10.1016/j.rser.2015.07.053

    Article  Google Scholar 

  4. J. Wellicome, J. Wind Eng. Ind. Aerodyn. 20, 111 (1985). https://doi.org/10.1016/0167-6105(85)90015-7

    Article  Google Scholar 

  5. M. Canale, L. Fagiano, M. Milanese, IEEE Trans. Control Syst. Technol. 18(2), 279–293 (2010). https://doi.org/10.1109/TCST.2009.2017933

  6. E. Commission, D.-G. for Research, and innovation, study on challenges in the commercialisation of airborne wind energy systems (Publications Office, 2018). https://doi.org/10.2777/87591

  7. A. Ilzhöfer, B. Houska, M. Diehl, Int. J. Robust Nonlinear Control 17, 1590 (2007). https://doi.org/10.1002/rnc.1210. (onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.1210)

  8. M. Canale, L. Fagiano, M. Ippolito, M. Milanese, Control of tethered airfoils for a new class of wind energy generator, Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 2006, pp. 4020–4026. https://doi.org/10.1109/CDC.2006.376775

  9. M. Erhard, H. Strauch, Automatic control of pumping cycles for the skysails prototype in airborne wind energy (2018), pp. 189–213

  10. P. Williams, B. Lansdorp, W. Ockels, J. Guid. Control Dyn. 31, 81 (2008). https://doi.org/10.2514/1.30089

    Article  ADS  Google Scholar 

  11. S.J. Qin, T.A. Badgwell, in Nonlinear Model Predictive Control, ed. by F. Allgöwer, A. Zheng (Birkhäuser Basel, Basel, 2000), pp. 369–392

  12. I. Argatov, P. Rautakorpi, R. Silvennoinen, Renew. Energy 34, 1525 (2009). https://doi.org/10.1016/j.renene.2008.11.001

    Article  Google Scholar 

  13. B. Houska, M. Diehl, in 2007 European Control Conference, ECC 2007 (2006)

  14. R. Sutton, A. Barto, Reinforcement Learning: An Introduction (MIT Press, 2018)

    MATH  Google Scholar 

  15. M.L. Littman, Nature 521, 445 (2015)

    Article  ADS  Google Scholar 

  16. D. Ernst, M. Glavic, F. Capitanescu, L. Wehenkel, IEEE Trans. Syst. Man Cybern. Part B Cybern. 39, 517 (2009). https://doi.org/10.1109/TSMCB.2008.2007630

  17. G. Reddy, J. Wong-Ng, A. Celani, T.J. Sejnowski, M. Vergassola, Nature 562, 236 (2018)

    Article  ADS  Google Scholar 

  18. M.G. Bellemare, S. Candido, P.S. Castro, J. Gong, M.C. Machado, S. Moitra, S.S. Ponda, Z. Wang, Nature 588, 77 (2020). https://doi.org/10.1038/s41586-020-2939-8

    Article  ADS  Google Scholar 

  19. G. Novati, L. Mahadevan, P. Koumoutsakos, Phys. Rev. Fluids 4, 093902 (2019). https://doi.org/10.1103/PhysRevFluids.4.093902

    Article  ADS  Google Scholar 

  20. S. Verma, G. Novati, P. Koumoutsakos, Proc. Natl. Acad. Sci. (2018). https://doi.org/10.1073/pnas.1800923115

    Article  Google Scholar 

  21. L. Biferale, F. Bonaccorso, M. Buzzicotti, P. Clark Di Leoni, K. Gustavsson, Chaos Interdiscip. J. Nonlinear Sci. 29, 103138 (2019)

    Article  Google Scholar 

  22. M. Canale, L. Fagiano, M. Milanese, IEEE Trans. Control Syst. Technol. 18, 279 (2010). https://doi.org/10.1109/TCST.2009.2017933

    Article  Google Scholar 

  23. A.T. Patera, J. Comput. Phys. 54, 468 (1984). https://doi.org/10.1016/0021-9991(84)90128-1

    Article  ADS  Google Scholar 

  24. V. Avsarkisov, S. Hoyas, M. Oberlack, J. García-Galache, J. Fluid Mech. 751, R1 (2014). https://doi.org/10.1017/jfm.2014.323

    Article  ADS  Google Scholar 

  25. K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, IEEE Signal Process. Mag. 34, 26 (2017). https://doi.org/10.1109/MSP.2017.2743240

    Article  ADS  Google Scholar 

Download references

Funding

This project has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N. 956457. We are grateful to Lorenzo Basile and Emanuele Panizon for many profitable discussions and useful comments.

Author information

Authors and Affiliations

Authors

Contributions

NO and CL: performed research and wrote the paper. JO and AM: performed research. AC: designed research and wrote the paper.

Corresponding author

Correspondence to A. Celani.

Additional information

Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks. Guest editors: Luca Biferale, Michele Buzzicotti, Massimo Cencini. .

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1648 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orzan, N., Leone, C., Mazzolini, A. et al. Optimizing airborne wind energy with reinforcement learning. Eur. Phys. J. E 46, 2 (2023). https://doi.org/10.1140/epje/s10189-022-00259-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00259-2

Navigation