Skip to main content
Log in

BCFW tree level QCD corrections to WBF Higgs production

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We explicitly compute analytic tree level amplitudes for the production of a Higgs boson via Weak Boson Fusion (WBF) with one and two additional gluon emissions in the final state. Also, the computation for the additional emission of an arbitrary number of gluons is discussed, obtaining a general result related to the procedure of contraction of 2 Single Weak Boson (SWB) currents which are precisely characterized. The generalization of the Britto-Cachazo-Feng-Witten (BCFW) formula to the massive case is applied obtaining compact results which agree with those calculated with the conventional approach of Feynman diagrams. We show that, in relation to the latter method, the involved BCFW amplitudes are computed through a notably more efficient process (particularly for high numbers of external particles) suggesting that successive corrections to the WBF process can be obtained alike in a swift way. The explicit expressions are provided in a parallel presentation of both approaches, putting the emphasis on the fundamental features and advantages of the BCFW scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Figy, C. Oleari, D. Zeppenfeld, Phys. Rev. D 68, 073005 (2003) arXiv:hep-ph/0306109v1.

    Article  ADS  Google Scholar 

  2. Kaoru Hagiwara, Qiang Li and Kentarou Mawatari, arXiv:0905.4314v2 [hep-ph].

  3. D.M. Asner, M. Cunningham, S. Dejong, K. Randrianarivony, C. Santamarina, M. Schram, Phys. Rev. D 82, 093002 (2010) arXiv:1006.06069 [hep-ph].

    Article  ADS  Google Scholar 

  4. D. Zeppenfeld, R. Kinnunen, A. Nikitenko, E. Richter-Was, Phys. Rev. D 62, 013009 (2000) arXiv:hep-ph/0002036v1.

    Article  ADS  Google Scholar 

  5. T. Plehn, D. Rainwater, D. Zeppenfeld, Phys. Rev. Lett. 88, 051801 (2002) arXiv:hep-ph/0105325v2.

    Article  ADS  Google Scholar 

  6. M. Duhrssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein, D. Zeppenfeld, Phys. Rev. D 70, 113009 (2004) arXiv:hep-ph/0406323v1.

    Article  ADS  Google Scholar 

  7. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, Phys. Lett. B 556, 50 (2003) arXiv:hep-ph/0210261v2.

    Article  ADS  Google Scholar 

  8. T. Figy, V. Hankele, G. Klamke, D. Zeppenfeld, Phys. Rev. D 74, 095001 (2006) arXiv:hep-ph/0609075v2.

    Article  ADS  Google Scholar 

  9. L. Dixon, arXiv:hep-ph/9601359v2.

  10. Z. Bern, L. Dixon, D. Kosower, Ann. Phys. (N.Y.) 322, 1587 (2007) arXiv:0704.2798v2 [hep-ph].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. Peskin, arXiv:1101.2414v1 [hep-ph].

  12. H. Dreiner, H. Haber, S. Martin, Phys. Rep. 494, 1 (2010) arXiv:0812.1594v5 [hep-ph].

    Article  MathSciNet  ADS  Google Scholar 

  13. Z. Bern, D. Forde, D. Kosower, P. Mastrolia, Phys. Rev. D 72, 025006 (2005) arXiv:hep-ph/0412167v2.

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Badger, E. Glover, V. Khoze, JHEP 01, 066 (2006) arXiv:hep-th/0507161v1.

    Article  MathSciNet  ADS  Google Scholar 

  15. L. Dixon, Y. Sofianatos, JHEP 08, 058 (2009) arXiv:0906.0008v3 [hep-ph].

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Badger, J.M. Campbell, R.K. Ellis, C. Williams, JHEP 12, 035 (2009) arXiv:0910.4481v1 [hep-ph].

    Article  ADS  Google Scholar 

  17. C. Boucher-Veronneau, A. Larkoski, JHEP 09, 130 (2011) arXiv:1108.5385v2 [hep-th].

    Article  ADS  Google Scholar 

  18. T. Figy, V. Hankele, D. Zeppenfeld, JHEP 02, 076 (2008) arXiv:0710.5621v2 [hep-ph].

    Article  ADS  Google Scholar 

  19. M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. D 77, 013002 (2008) arXiv:0710.4749v1 [hep-ph].

    Article  ADS  Google Scholar 

  20. P. Bolzoni, F. Maltoni, S. Moch, M. Zaro, Phys. Rev. D 85, 035002 (2012) arXiv:1109.3717v2 [hep-ph].

    Article  ADS  Google Scholar 

  21. K. Arnold, M. Bähr, G. Bozzi, F. Campanario, C. Englert, T. Figy, N. Greiner, C. Hackstein, V. Hankele, B. Jäger, G. Klämke, M. Kubocz, C. Oleari, S. Plätzer, S. Prestel, M. Worek, D. Zeppenfeld, Comput. Phys. Commun. 180, 1661 (2009) arXiv:0811.4559v2 [hep-ph].

    Article  ADS  Google Scholar 

  22. K. Arnold, J. Bellm, G. Bozzi, M. Brieg, F. Campanario, C. Englert, B. Feigl, J. Frank, T. Figy, F. Geyer, C. Hackstein, V. Hankele, B. Jäger, M. Kerner, M. Kubocz, C. Oleari, S. Palmer, S. Plätzer, M. Rauch, H. Rzehak, F. Schissler, M. Spannowsky, M. Worek, D. Zeppenfeld, arXiv:1107.4038v1 [hep-ph].

  23. S. Weinberg, The Quantum Theory of Fields, Foundations, Vol. I, (Cambridge University Press, Cambridge, 1995).

  24. M. Peskin, D. Schroeder, Introduction to Quantum Field Theory (Westview Press, USA, 1995).

  25. A. Straessner, Electroweak Physics at LEP and LHC, STMP 235 (Springer, Berlin Heidelberg, 2010).

  26. D. Maitre, P. Mastrolia, Comput. Phys. Commun. 179, 501 (2008) arXiv:0710.5559v2 [hep-ph].

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Arnold, T. Figy, B. Jager, D. Zeppenfeld, arXiv:1110.2402v2 [hep-ph].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Fazio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazio, A.R., Vargas, S.C. BCFW tree level QCD corrections to WBF Higgs production. Eur. Phys. J. Plus 127, 74 (2012). https://doi.org/10.1140/epjp/i2012-12074-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12074-2

Keywords

Navigation