Skip to main content
Log in

Hubble drift in Palatini \(f(\mathcal{R})\) theories

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In a Palatini \(f(\mathcal{R})\) model, we define chronodynamical effects due to the choice of atomic clocks as standard reference clocks and we develop a formalism able to quantitatively separate them from the usual effective dark sources one has in extended theories, namely the ones obtained by recasting field equations for \(\tilde{g}\) in the form of Einstein equations. We apply the formalism to Hubble drift and briefly discuss the issue about the physical frame. In particular, we shall argue that there is not one single physical frame, for example, in the sense one defines measure in one frame while test particles goes along geodesics in the other frame. That is the physical characteristic of extended gravity. As an example, we discuss how the Jordan frame may be well suited to discuss cosmology, though it fails within the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Melchiorri, B.O. Melchiorri, L. Pietranera, B.O. Melchiorri, Astrophys. J. 250, L1 (1981)

    Article  ADS  Google Scholar 

  2. E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009) arXiv:0803.0547 [astro-ph]

    Article  ADS  Google Scholar 

  3. Planck Collaboration, Astron. Astrophys. 594, A13 (2016) arXiv:1502.01589 [astro-ph.CO]

    Article  Google Scholar 

  4. The Fermi-LAT Collaboration, The Fermi-LAT high-latitude Survey: Source Count Distributions and the Origin of the Extragalactic Diffuse Background, arXiv:1003.0895 [astro-ph.CO]

  5. The LIGO -Virgo Collaborations, Phys. Rev. Lett. 119, 161101 (2017) arXiv:1710.05832 [gr-qc]

    Article  ADS  Google Scholar 

  6. F. Zwicky, Helvetica Phys. Acta 6, 110 (1933)

    ADS  Google Scholar 

  7. F. Zwicky, Astrophys. J. 86, 217 (1937)

    Article  ADS  Google Scholar 

  8. K.C. Freeman, Astrophys. J. 160, 811 (1970)

    Article  ADS  Google Scholar 

  9. V.C. Rubin, J.W.K. Ford, Astrophys. J. 159, 379 (1970)

    Article  ADS  Google Scholar 

  10. V. Trimble, Annu. Rev. Astron. Astrophys. 25, 425 (1987)

    Article  ADS  Google Scholar 

  11. A.G. Riess et al., Astrophys. J. 116, 1009 (1998) arXiv:astro-ph/9805201

    Google Scholar 

  12. M. Milgrom, Astrophys. J. 270, 365 (1983)

    Article  ADS  Google Scholar 

  13. P.D. Mannheim, D. Kazanas, Astrophys. J. 342, 635 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Campigotto, L. Fatibene, Ann. Phys. 362, 521 (2015) arXiv:1506.06071

    Article  ADS  Google Scholar 

  15. R. Jackiw, S.-Y. Pi, Fake Conformal Symmetry in Conformal Cosmological Models, arXiv:1407.8545

  16. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012) arXiv:1106.2476 [astro-ph.CO]

    Article  MathSciNet  ADS  Google Scholar 

  17. L. Fatibene, S. Garruto, Int. J. Geom. Methods Mod. Phys. 11, 1460018 (2014) arXiv:1403.7036 [gr-qc]

    Article  MathSciNet  Google Scholar 

  18. S. Capozziello, M. De Laurentis, Scholarpedia 10, 31422 (2015)

    Article  ADS  Google Scholar 

  19. L. Fatibene, M. Francaviglia, Extended Theories of Gravitation and the Curvature of the Universe -- Do We Really Need Dark Matter? in Open Questions in Cosmology, edited by Gonzalo J. Olmo (Intech, 2012), ISBN 978-953-51-0880-1

  20. G.J. Olmo, Palatini Approach to Modified Gravity: f(R) Theories and Beyond, arXiv:1101.3864 [gr-qc]

  21. A. Borowiec, M. Kamionka, A. Kurek, Marek Szydłowski, Cosmic acceleration from modified gravity with Palatini formalism, arXiv:1109.3420 [gr-qc]

  22. Salvatore Capozziello, Mariafelicia F. De Laurentis, Lorenzo Fatibene, Marco Ferraris, Simon Garruto, SIGMA 12, 006 (2016) arXiv:1509.08008

    Google Scholar 

  23. G. Magnano, L.M. Sokolowski, Phys. Rev. D 50, 5039 (1994) gr-qc/9312008

    Article  MathSciNet  ADS  Google Scholar 

  24. E. Barausse, T.P. Sotiriou, J.C. Miller, A no-go theorem for polytropic spheres in Palatini f(R) gravity, DOI: 10.1088/0264-9381/25/6/062001

  25. G.J. Olmo, Re-examination of polytropic spheres in Palatini f(R) gravity, DOI: 10.1103/PhysRevD.78.104026

  26. A. Mana, L. Fatibene, M. Ferraris, JCAP 10, 040 (2015) arXiv:1505.06575

    Article  ADS  Google Scholar 

  27. A. Wojnar, Eur. Phys. J. C 78, 421 (2018) arXiv:1712.01943 [gr-qc]

    Article  ADS  Google Scholar 

  28. P. Pinto, L. Del Vecchio, L. Fatibene, M. Ferraris, Extended Cosmology in Palatini f(R)-theories, arXiv:1807.00397 [gr-qc]

  29. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003) hep-th/0307288

    Article  ADS  Google Scholar 

  30. S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) hep-th/0601213

    Article  MathSciNet  Google Scholar 

  31. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011) arXiv:1011.0544

    Article  MathSciNet  ADS  Google Scholar 

  32. V.F. Cardone, S. Camera, A. Diaferio, JCAP 02, 030 (2012) arXiv:1201.3272 [astro-ph.CO]

    Article  ADS  Google Scholar 

  33. S. Camera, A. Diaferio, V.F. Cardone, JCAP 07, 016 (2011) arXiv:1104.2740 [astro-ph.CO]

    Article  ADS  Google Scholar 

  34. V.F. Cardone, S. Camera, R. Mainini, A. Romano, A. Diaferio, R. Maoli, R. Scaramella, Mon. Not. R. Astron. Soc. 430, 21 (2013) arXiv:1204.3148 [astro-ph.CO]

    Article  Google Scholar 

  35. M.R. oshan, F. Shojai, Phys. Lett. B 668, 238 (2008) arXiv:0809.1272 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Ehlers, F.A.E. Pirani, A. Schild, The Geometry of Free Fall and Light Propagation, in General Relativity edited by L.O. Raifeartaigh (Clarendon, Oxford, 1972)

  37. M. Di Mauro, L. Fatibene, M. Ferraris, M. Francaviglia, Int. J. Geom. Methods Mod. Phys. 7, 887 (2010) gr-qc/0911.2841

    Article  MathSciNet  Google Scholar 

  38. L. Fatibene, Relativistic Theories, Gravitational Theories and General Relativity, in preparation, draft version 1.0.1, https://sites.google.com/site/lorenzofatibene/my-links/book-version-1-0-1

  39. V. Perlick, Gen. Relativ. Gravit. 19, 1059 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Borowiec, M. Ferraris, M. Francaviglia, I. Volovich, Class. Quantum Grav. 15, 43 (1998)

    Article  ADS  Google Scholar 

  41. R. Scaramella, Euclid space mission: a cosmological challenge for the next 15 years, in Proceedings IAU Symposium No. 306, 2014, ``Statistical Challenges in 21st Century Cosmology'', edited by A.F. Heavens, J.-L. Starck, A. Krone-Martins, arXiv:1501.04908

  42. P.-S. Corasaniti, D. Huterer, A. Melchiorri, Phys. Rev. D 75, 062001 (2007) arXiv:astro-ph/0701433

    Article  ADS  Google Scholar 

  43. EUCLID Collaboration (R. Laureijs), Euclid Definition Study Report, ESA-SRE (2011) 12 arXiv:1110.3193 [astro-ph.CO]

  44. Euclid Theory Working Group (Luca Amendola et al.), Living Rev. Relativ. 16, 6 (2013) arXiv:1206.1225 [astro-ph.CO]

    Article  Google Scholar 

  45. Luca Amendola et al., Living Rev. Relativ. 21, 2 (2018) arXiv:1606.00180 [astro-ph.CO]

    Article  ADS  Google Scholar 

  46. P. Bull, Fundamental Physics with the Square Kilometer Array, arXiv:1810.02680 [astro-ph.CO]

  47. SKA Cosmology SWG Collaboration (Roy Maartens et al.), PoS AASKA 14, 016 (2015) arXiv:1501.04076 [astro-ph.CO]

    Google Scholar 

  48. Hans-Rainer Klckner et al., PoS AASKA 14, 027 (2015) arXiv:1501.03822 [astro-ph.CO]

    Google Scholar 

  49. L. Fatibene, M. Francaviglia, Int. J. Geom. Methods Mod. Phys. 09, 1260003 (2012) arXiv:1109.4115 [math-ph]

    Article  Google Scholar 

  50. G. Magnano, M. Ferraris, M. Francaviglia, Gen. Relativ. Gravit. 19, 465 (1987)

    Article  ADS  Google Scholar 

  51. L. Fatibene, M. Francaviglia, Int. J. Geom. Methods Mod. Phys. 11, 1450008 (2014) arXiv:1302.2938 [gr-qc]

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fatibene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Vecchio, L., Fatibene, L., Capozziello, S. et al. Hubble drift in Palatini \(f(\mathcal{R})\) theories. Eur. Phys. J. Plus 134, 5 (2019). https://doi.org/10.1140/epjp/i2019-12382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12382-y

Navigation