Skip to main content
Log in

Resolution-scale relativistic formulation of non-differentiable mechanics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This article motivates and presents the scale relativistic approach to non-differentiability in mechanics and its relation to quantum mechanics. It stems from the scale relativity proposal to extend the principle of relativity to resolution-scale transformations, which leads to considering non-differentiable dynamical paths. We first define a complex scale-covariant time-differential operator and show that mechanics of non-differentiable paths is implemented in the same way as classical mechanics but with the replacement of the time derivative and velocity with the time-differential operator and associated complex velocity. With this, the generalized form of Newton’s fundamental relation of dynamics is shown to take the form of a Langevin equation in the case of stationary motion characterized by a null average classical velocity. The numerical integration of the Langevin equation in the case of a harmonic oscillator taken as an example reveals the same statistics as the stationary solutions of the Schrödinger equation for the same problem. This motivates the rest of the paper, which shows Schrödinger’s equation to be a reformulation of Newton’s fundamental relation of dynamics as generalized to non-differentiable geometries and leads to an alternative interpretation of the other axioms of standard quantum mechanics in a coherent picture. This exercise validates the scale relativistic approach and, at the same time, it allows to envision macroscopic chaotic systems observed at resolution time-scales exceeding their horizon of predictability as candidates in which to search for quantum-like dynamics and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifshitz, Mechanics, Third Edition: Volume 1, Course of Theoretical Physics, 3 edition (Butterworth-Heinemann, 1976)

  2. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley & Sons, 1972)

  3. V. Fock, The Theory of Space, Time and Gravitation: 2nd Revised Edition (Pergamon, 1964)

  4. B. Mandelbrot, Fractals: Form, Chance and Dimension (W. H. Freeman and Co., 1977)

  5. L. Nottale, Fractal Space-Time and Microphysics (World Scientific Publishing Company, 1993)

  6. L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics (World Scientific Publishing Company, 2011)

  7. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integral (Dover Publication, Inc., 2005) emended edition by D.F. Styer

  8. E. Nelson, Phys. Rev. 150, 1079 (1966)

    Article  ADS  Google Scholar 

  9. L.F. Abbott, M.B. Wise, Am. J. Phys. 49, 37 (1981)

    Article  ADS  Google Scholar 

  10. J. Gleick, Chaos: Making a New Science (Penguin Books, 1987)

  11. J.M.T. Thompson, Int. J. Bifurc. Chaos 26, 1630035 (2016)

    Article  Google Scholar 

  12. L. Nottale, M.-N. Célérier, T. Lehner, J. Math. Phys. 47, 032303 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Mo, A. Simha, S. Kheifets, M.G. Raizen, Opt. Express 23, 1888 (2015)

    Article  ADS  Google Scholar 

  14. K. Yasue, J. Funct. Anal. 41, 327 (1981)

    Article  Google Scholar 

  15. T. Koide, T. Kodama, K. Tsushima, J. Phys.: Conf. Ser. 626, 012055 (2015)

    Google Scholar 

  16. M. McClendon, H. Rabitz, Phys. Rev. A 37, 3479 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. R.P. Hermann, J. Phys. A 30, 3967 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  18. S.N.T. Al-Rashid, M.A.Z. Habeeb, K.A. Ahmad, J. Quantum Inf. Sci. 1, 7 (2011)

    Article  Google Scholar 

  19. M. Bonilla, O. Rosas-Ortiz, J. Phys.: Conf. Ser. 839, 012009 (2017)

    Google Scholar 

  20. S.N.T. Al-Rashid, J. Anbar Univ. Pure Sci. 1, 75 (2007)

    Google Scholar 

  21. D.J. Griffiths, Introduction to Quantum Mechanics (Pearson Education Inc., 1995)

  22. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics (Wiley, 1991)

  23. L. Nottale, M.-N. Célérier, J. Phys. A 40, 14471 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Madelung, Z. Phys. 40, 322 (1927) see for a translation by D.H. Delphenich, http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/madelung_-_hydrodynamical_interp.pdf

    Article  ADS  Google Scholar 

  25. N.D. Mermin, Phys. Today 38, 38 (1985)

    Article  Google Scholar 

  26. E. Schrödinger, Math. Proc. Cambridge Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  27. M.-N. Célérier, L. Nottale, Int. J. Mod. Phys. A 25, 4239 (2010)

    Article  ADS  Google Scholar 

  28. A.E. Caswell, Science 69, 384 (1929)

    Article  ADS  Google Scholar 

  29. W.M. Malisoff, Science 70, 328 (1929)

    Article  ADS  Google Scholar 

  30. J.B. Penniston, Science 71, 512 (1930)

    Article  ADS  Google Scholar 

  31. L. Nottale, G. Schumacher, J. Gay, Astron. Astrophys. 322, 1018 (1997)

    ADS  Google Scholar 

  32. R. Hermann, G. Schumacher, R. Guyard, Astron. Astrophys. 335, 281 (1998)

    ADS  Google Scholar 

  33. L. Nottale, Astron. Astrophys. 361, 379 (2000)

    ADS  Google Scholar 

  34. S. LeBohec, Int. J. Mod. Phys. A 32, 1750156 (2017)

    Article  ADS  Google Scholar 

  35. G. Calcagni, M. Ronco, arXiv:1706.02159 [hep-th]

  36. G. Amelino-Camelia, G. Calcagni, M. Ronco, Phys. Lett. B 774, 630 (2017)

    Article  ADS  Google Scholar 

  37. P.-H. Chavanis, Eur. Phys. J. Plus 132, 286 (2017)

    Article  Google Scholar 

  38. A. Bhattacharya, R. Saha, R. Ghosh, arXiv:1706.02589 [physics.gen-ph]

  39. P.-H. Chavanis, arXiv:1706.05900 [gr-qc]

  40. G. Duchateau, arXiv:1703.01871 [physics.atom-ph]

  41. P. Turner, L. Nottale, J. Supercond. Nov. Magn. 29, 3113 (2016)

    Article  Google Scholar 

  42. P. Turner, L. Nottale, Prog. Biophys. Mol. Biol. 123, 48 (2017)

    Article  Google Scholar 

  43. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  44. P. Holland, Found. Phys. 45, 134 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan LeBohec.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teh, MH., Nottale, L. & LeBohec, S. Resolution-scale relativistic formulation of non-differentiable mechanics. Eur. Phys. J. Plus 134, 438 (2019). https://doi.org/10.1140/epjp/i2019-12840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12840-6

Navigation