Skip to main content
Log in

On the dynamics of axially functionally graded CNT strengthened deformable beams

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, by functionally grading carbon nanotube (CNT) fibres through the axial direction of deformable beams, a new model for strengthening such structures is formulated. The strengthened deformable beam is additionally supported by a varying elastic foundation which is modelled via the Winkler–Pasternak elastic foundation. CNT distribution in the longitudinal direction is modelled using a power-law function presenting general forms of variation from linear to parabolic models. Equations of motion are determined using Hamilton’s principle and are solved by employing the generalised differential quadrature approach method. A comprehensive parametric investigation is presented in order to indicate the influence of having CNT fibres distributed functionally through the length. It is shown that grading CNT fibres axially have a significant effect in varying the natural frequency parameter. Moreover, the influence of having Winkler–Pasternak elastic bed on the free vibration of such structures is discussed considering different types of foundation stiffness variation through the length. A comprehensive comparison study is presented to verify the current methodology and formulation by using previous literature for foundation modelling and FE modelling for linearly varying CNT’s longitudinal distribution, which for all the cases, a good agreement between the results is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.P. Kollar, G.S. Springer, Mechanics of Composite Structures (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  2. O. Faruk et al., Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37(11), 1552–1596 (2012)

    Google Scholar 

  3. H. Ku et al., A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 42(4), 856–873 (2011)

    MathSciNet  Google Scholar 

  4. J. Holbery, D. Houston, Natural-fiber-reinforced polymer composites in automotive applications. J. Miner. Met. Mater. Soc. 58(11), 80–86 (2006)

    Google Scholar 

  5. B. Sitharaman et al., In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43(2), 362–370 (2008)

    Google Scholar 

  6. P. Gupta et al., Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration. Carbon 95, 715–724 (2015)

    Google Scholar 

  7. M. Mansor et al., Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 51, 484–492 (2013)

    Google Scholar 

  8. G. Martinola et al., Strengthening and repair of RC beams with fiber reinforced concrete. Cem. Concr. Compos. 32(9), 731–739 (2010)

    Google Scholar 

  9. S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55(1), 41–64 (2010)

    Google Scholar 

  10. H. Bakhshi Khaniki, M.H. Ghayesh, A review on the mechanics of carbon nanotube strengthened deformable structures. Eng. Struct. (2020). https://doi.org/10.1016/j.engstruct.2020.110711

    Article  Google Scholar 

  11. M.H. Ghayesh, H. Farokhi, M. Amabili, In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos. Part B Eng. 60, 423–439 (2014)

    Google Scholar 

  12. M.H. Ghayesh, H. Farokhi, Chaotic motion of a parametrically excited microbeam. Int. J. Eng. Sci. 96, 34–45 (2015)

    MathSciNet  MATH  Google Scholar 

  13. M.H. Ghayesh, M. Amabili, H. Farokhi, Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int. J. Eng. Sci. 71, 1–14 (2013)

    MathSciNet  MATH  Google Scholar 

  14. M.H. Ghayesh, H. Farokhi, M. Amabili, Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos. Part B Eng. 50, 318–324 (2013)

    MATH  Google Scholar 

  15. A. Gholipour, H. Farokhi, M.H. Ghayesh, In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn. 79(3), 1771–1785 (2015)

    Google Scholar 

  16. M.H. Ghayesh, H. Farokhi, G. Alici, Size-dependent performance of microgyroscopes. Int. J. Eng. Sci. 100, 99–111 (2016)

    MathSciNet  MATH  Google Scholar 

  17. H.B. Khaniki, On vibrations of FG nanobeams. Int. J. Eng. Sci. 135, 23–36 (2019)

    MathSciNet  MATH  Google Scholar 

  18. H.B. Khaniki, On vibrations of nanobeam systems. Int. J. Eng. Sci. 124, 85–103 (2018)

    MathSciNet  MATH  Google Scholar 

  19. H.B. Khaniki, Vibration analysis of rotating nanobeam systems using Eringen’s two-phase local/nonlocal model. Phys. E Low-Dimens. Syst. Nanostruct. 99, 310–319 (2018)

    ADS  Google Scholar 

  20. K. Liew, Z. Lei, L. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Google Scholar 

  21. E.T. Thostenson, T.-W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D Appl. Phys. 35(16), L77 (2002)

    ADS  Google Scholar 

  22. C. Park et al., Aligned single-wall carbon nanotube polymer composites using an electric field. J. Polym. Sci. Part B Polym. Phys. 44(12), 1751–1762 (2006)

    ADS  Google Scholar 

  23. H. Kwon, C.R. Bradbury, M. Leparoux, Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Adv. Eng. Mater. 13(4), 325–329 (2011)

    Google Scholar 

  24. L.-L. Ke, J. Yang, S. Kitipornchai, Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92(3), 676–683 (2010)

    Google Scholar 

  25. L.-L. Ke, J. Yang, S. Kitipornchai, Dynamic stability of functionally graded carbon nanotube-reinforced composite beams. Mech. Adv. Mater. Struct. 20(1), 28–37 (2013)

    Google Scholar 

  26. F. Lin, Y. Xiang, Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 38(15–16), 3741–3754 (2014)

    MathSciNet  MATH  Google Scholar 

  27. R. Ansari et al., Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos. Struct. 113, 316–327 (2014)

    Google Scholar 

  28. K. Mayandi, P. Jeyaraj, Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 229(1), 13–28 (2015)

    Google Scholar 

  29. L. Zhang, Z. Lei, K. Liew, Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Compos. Part B Eng. 75, 36–46 (2015)

    MATH  Google Scholar 

  30. Z. Lei, L. Zhang, K. Liew, Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos. Struct. 127, 245–259 (2015)

    Google Scholar 

  31. M. Mirzaei, Y. Kiani, Thermal buckling of temperature dependent FG-CNT reinforced composite plates. Meccanica 51(9), 2185–2201 (2016)

    MathSciNet  MATH  Google Scholar 

  32. L. Zhang, Z. Song, K. Liew, Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method. Compos. Struct. 128, 165–175 (2015)

    Google Scholar 

  33. N.D. Duc et al., Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations. Thin Walled Struct. 115, 300–310 (2017)

    Google Scholar 

  34. Z. Shi et al., An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions. Sci. Rep. 7(1), 12909 (2017)

    ADS  Google Scholar 

  35. M.H. Ghayesh, Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams. Appl. Acoust. 154, 121–128 (2019)

    Google Scholar 

  36. S. Rajasekaran, H. Bakhshi Khaniki, Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory. Mech. Adv. Mater. Struct. 26(14), 1245–1259 (2019)

    Google Scholar 

  37. M.H. Ghayesh, Viscoelastic dynamics of axially FG microbeams. Int. J. Eng. Sci. 135, 75–85 (2019)

    MathSciNet  MATH  Google Scholar 

  38. M.H. Ghayesh, Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Appl. Math. Model. 59, 583–596 (2018)

    MathSciNet  MATH  Google Scholar 

  39. M.H. Ghayesh, Dynamics of functionally graded viscoelastic microbeams. Int. J. Eng. Sci. 124, 115–131 (2018)

    MathSciNet  MATH  Google Scholar 

  40. M.H. Ghayesh, Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Compos. Struct. 225, 110974 (2019)

    Google Scholar 

  41. M.H. Ghayesh, Mechanics of viscoelastic functionally graded microcantilevers. Eur. J. Mech. A/Solids 73, 492–499 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  42. M.H. Ghayesh, Viscoelastic nonlinear dynamic behaviour of Timoshenko FG beams. Eur. Phys. J. Plus 134(8), 401 (2019)

    Google Scholar 

  43. M.H. Ghayesh, Resonant vibrations of FG viscoelastic imperfect Timoshenko beams. J. Vib. Control 25(12), 1823–1832 (2019)

    MathSciNet  Google Scholar 

  44. S. Hosseini-Hashemi, H.B. Khaniki, Three dimensional dynamic response of functionally graded nanoplates under a moving load. Struct. Eng. Mech. 66(2), 249–262 (2018)

    Google Scholar 

  45. S. Rajasekaran, H.B. Khaniki, Bending, buckling and vibration analysis of functionally graded non-uniform nanobeams via finite element method. J. Braz. Soc. Mech. Sci. Eng. 40(11), 549 (2018)

    Google Scholar 

  46. M.H. Ghayesh, Nonlinear oscillations of FG cantilevers. Appl. Acoust. 145, 393–398 (2019)

    Google Scholar 

  47. S. Rajasekaran, H.B. Khaniki, Free vibration analysis of bi-directional functionally graded single/multi-cracked beams. Int. J. Mech. Sci. 144, 341–356 (2018)

    Google Scholar 

  48. H.B. Khaniki, S. Rajasekaran, Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory. Mater. Res. Express 5(5), 055703 (2018)

    ADS  Google Scholar 

  49. S. Rajasekaran, H.B. Khaniki, Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass. Appl. Math. Model. 72, 129–154 (2019)

    MathSciNet  MATH  Google Scholar 

  50. S. Rajasekaran, H.B. Khaniki, Bi-directional functionally graded thin-walled non-prismatic Euler beams of generic open/closed cross section part II: static, stability and free vibration studies. Thin Walled Struct. 141, 646–674 (2019)

    Google Scholar 

  51. S. Rajasekaran, H.B. Khaniki, Bi-directional functionally graded thin-walled non-prismatic Euler beams of generic open/closed cross section part I: theoretical formulations. Thin Walled Struct. 141, 627–645 (2019)

    Google Scholar 

  52. C. Truesdell, Linear Theories of Elasticity and Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells, vol. 2 (Springer, Berlin, 2013)

    Google Scholar 

  53. S. Hashmi, Comprehensive Materials Processing (Newnes, Oxford, 2014)

    Google Scholar 

  54. M. Rafiee, J. Yang, S. Kitipornchai, Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams. Comput. Math Appl. 66(7), 1147–1160 (2013)

    MATH  Google Scholar 

  55. F. Ebrahimi, M.R. Barati, Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory. Mech. Adv. Mater. Struct. 25(11), 953–963 (2018)

    Google Scholar 

  56. X. Li et al., Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017)

    Google Scholar 

  57. T. Fung, Stability and accuracy of differential quadrature method in solving dynamic problems. Comput. Methods Appl. Mech. Eng. 191(13–14), 1311–1331 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  58. ANSYS® Multiphysics™, Workbench 19.2, Workbench User’s Guide, ANSYS Workbench Systems, Analysis Systems, Modal

  59. H.-S. Shen, C.-L. Zhang, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31(7), 3403–3411 (2010)

    Google Scholar 

  60. D. Zhou, A general solution to vibrations of beams on variable Winkler elastic foundation. Comput. Struct. 47(1), 83–90 (1993)

    MATH  Google Scholar 

  61. W. Chen, C. Lü, Z. Bian, A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Appl. Math. Model. 28(10), 877–890 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bakhshi Khaniki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaniki, H.B., Ghayesh, M.H. On the dynamics of axially functionally graded CNT strengthened deformable beams. Eur. Phys. J. Plus 135, 415 (2020). https://doi.org/10.1140/epjp/s13360-020-00433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00433-5

Navigation