Skip to main content
Log in

The invariant-based shortcut to adiabaticity for qubit heat engine operates under quantum Otto cycle

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we study the role and relevance of the cost for an invariant-based shortcut to adiabaticity enabled qubit heat engine operates in a quantum Otto cycle. We consider a qubit heat engine with Landau-Zener Hamiltonian and improve its performance using the Lewis–Riesenfeld invariant-based shortcut to adiabaticity method. Addressing the importance of cost for better performance, the paper explores its relationship with the work and efficiency of the heat engine. We analyze the cost variation with the time duration of non-adiabatic unitary processes involved in the heat engine cycle. The cost required to attain the quasi-static performance of the qubit heat engine is also discussed. We found the efficiency lost due to non-adiabaticity of the engine can be revived using the shortcut method and it is even possible to attain quasi-static performance under finite time with higher cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. H.T. Quan, Y. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

  2. H.T. Quan, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 79, 041129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.M. Zagoskin, S. Savelev, F. Nori, F.V. Kusmartsev, Squeezing as the source of inefficiency in the quantum Otto cycle. Phys. Rev. B 86, 014501 (2012)

  4. Y.H. Ma, S.H. Su, C.P. Sun, Quantum thermodynamic cycle with quantum phase transition. Phys. Rev. E 96, 022143 (2017)

    Article  ADS  Google Scholar 

  5. R. Kosloff, Y. Rezek, The quantum harmonic otto cycle. Entropy 19, 136 (2017)

    Article  ADS  Google Scholar 

  6. R. Alicki, The quantum open system as a model of the heat engine. J. Phys. A 12, L103 (1979)

    Article  ADS  Google Scholar 

  7. N. Linden, S. Popescu, P. Skrzypczyk, How small can thermal machines be? the smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010)

    Article  ADS  Google Scholar 

  8. J. Wang, Z. Wu, J. He, Quantum Otto engine of a two-level atom with single-mode fields. Phys. Rev. E 85, 041148 (2012)

  9. G. Benenti, G. Casati, K. Saito, R.S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. Geva, R. Kosloff, A quantum mechanical heat engine operating in finite time. a model consisting of spin1/2 systems as the working fluid. J. Chem. Phys. 96, 3054 (1992)

    Article  ADS  Google Scholar 

  11. Y. Zheng, P. Hänggi, D. Poletti, Occurrence of discontinuities in the performance of finite-time quantum Otto cycles. Phys. Rev. E 94, 012137 (2016)

    Article  ADS  Google Scholar 

  12. Selçuk Çakmak, Ferdi Altintas, Azmi Gençten, E. Özgür. Müstecaplıoğlu, Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin. Eur. Phys. J. D 71, 75 (2017)

  13. M. Pezzutto, M. Paternostro, Y. Omar, An out-ofequilibrium non-Markovian quantum heat engine. Quantum Sci. Technol. 4, 025002 (2019)

    Article  ADS  Google Scholar 

  14. S. Lee, M. Ha, J.M. Park, H. Jeong, Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Phys. Rev. E 101, 022127 (2020)

    Article  ADS  Google Scholar 

  15. O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  16. J.M. Diaz de la Cruz, M.A. Martin-Delgado, Quantum information engines with many-body states attaining optimal extractable work with quantum control. Phys. Rev. A 89, 032327 (2014)

    Article  ADS  Google Scholar 

  17. S.H. Lee, J. Um, H. Park, Nonuniversality of heat engine efficiency at maximum power. Phys. Rev. E 98, 052137 (2018)

    Article  ADS  Google Scholar 

  18. S. Deffner, Efficiency of harmonic quantum Otto engines at maximal power. Entropy 20, 875 (2018)

    Article  ADS  Google Scholar 

  19. K.E. Dorfman, D. Xu, J. Cao, Efficiency at maximum power of a laser quantum heat engine enhanced by noise induced coherence. Phys. Rev. E 97, 042120 (2018)

    Article  ADS  Google Scholar 

  20. Varinder Singh, Özgür. E. Müstecaplıoǧlu, Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir. Phys. Rev. E 102, 062123 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. M.V. Berry, Transitionless quantum driving. J. Phys. A 42, 365303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, J.G. Muga, P.R. Berman, C.C. Lin, Shortcuts to adiabaticity, Advances in Atomic, Molecular, and Optical Physics (Academic Press) 62. Chap. 2, 117–169 (2013)

  23. A. del Campo, Shortcuts to Adiabaticity by Counterdiabatic Driving. Phys. Rev. Lett. 111, 100502 (2013)

    Article  Google Scholar 

  24. S. Deffner, C. Jarzynski, A. del Campo, Classical and Quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 4, 021013 (2014)

    Google Scholar 

  25. Adolfo del Campo, Kihwan Kim, Focus on shortcuts to adiabaticity. New. J. Phys. 21, 050201 (2019)

    Article  Google Scholar 

  26. K. Takahashi, Transitionless quantum driving for spin systems. Phys. Rev. E 87, 062117 (2013)

    Article  ADS  Google Scholar 

  27. K. Funo, J.-N. Zhang, C. Chatou, K. Kim, M. Ueda, A. del Campo, Universal work fluctuations during shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 118, 100602 (2017)

    Article  ADS  Google Scholar 

  28. Barış Çakmak, “Finite-time two-spin quantum Otto engines: shortcuts to adiabaticity vs. irreversibility,arXiv:2102.11657 [quant-ph] (2021)

  29. S. Ibáñez, X. Chen, E. Torrontegui, J.G. Muga, A. Ruschhaupt, Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403 (2012)

  30. H.R. Lewis, W.B. Riesenfeld, An exact quantum theory of the time dependent harmonic oscillator and of a charged particle in a time dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, J.G. Muga, Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)

  32. E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D. Guéry-Odelin, J.G. Muga, Fast atomic transport without vibrational heating. Phys. Rev. A 83, 013415 (2011)

  33. X. Chen, E. Torrontegui, J.G. Muga, Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)

    Article  ADS  Google Scholar 

  34. X. Chen, E. Torrontegui, D. Stefanatos, J.S. Li, J.G. Muga, Optimal trajectories for efficient atomic transport without final excitation. Phys. Rev. A 84, 043415 (2011)

    Article  ADS  Google Scholar 

  35. E. Torrontegui, X. Chen, M. Modugno, A. Ruschhaupt, D. Guéry-Odelin, J.G. Muga, Fast transitionless expansion of cold atoms in optical Gaussian-beam traps. Phys. Rev. A 85, 033605 (2012)

  36. D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, J.G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Deng, Q.-H. Wang, Z. Liu, P. Hänggi, J. Gong, Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: Quantum and classical systems. Phys. Rev. E 88, 062122 (2013)

    Article  ADS  Google Scholar 

  38. O. Abah, E. Lutz, Performance of shortcut-to-adiabaticity quantum engines. Phys. Rev. E 98, 032121 (2018)

    Article  ADS  Google Scholar 

  39. O. Abah, M. Paternostro, Shortcut-to-adiabaticity Otto engine: New twist to finite-time thermodynamics. Phys. Rev. E 99, 022110 (2019)

    Article  ADS  Google Scholar 

  40. Yuanjian Zheng, Steve Campbell, Gabriele De Chiara, Dario Poletti, Cost of counterdiabatic driving and work output. Phys. Rev. A 94, 042132 (2016)

    Article  ADS  Google Scholar 

  41. Steve Campbell, Sebastian Deffner, Trade-off between speed and cost in shortcuts to adiabaticity. Phys. Rev. Lett. 118, 100601 (2017)

    Article  ADS  Google Scholar 

  42. O. Abah, R. Puebla, A. Kiely, G. De Chiara, M. Paternostro, S. Campbell, Energetic cost of quantum control protocols. New J. Phys. 21(10), 103048 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  43. B. Çakmak, Ö.E. Müstecaplıoǧlu, Spin quantum heat engines with shortcuts to adiabaticity. Phys. Rev. E 99, 032108 (2019)

  44. Michael A Nielsen, Isaac L Chuang, “Quantum computation and quantum information,” Cambridge University Press (2000)

  45. J. Roßsnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 352, 325 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. John P. S. Peterson, Tiago B. Batalhão, Marcela Herrera, Alexandre M. Souza, Roberto S. Sarthour, Ivan S. Oliveira, Roberto M. Serra, Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 123, 240601 (2019)

    Article  ADS  Google Scholar 

  47. T. Kiran, M. Ponmurugan, Invariant-based investigation of shortcut to adiabaticity for quantum harmonic oscillators under a time-varying frictional force. Phys. Rev. A 103, 042206 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  48. Andrea Solfanelli, Marco Falsetti, Michele Campisi, Nonadiabatic single-qubit quantum Otto engine. Phys. Rev. B 101, 054513 (2020)

    Article  ADS  Google Scholar 

  49. T. Kato, On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5, 435–439 (1950)

    Article  ADS  Google Scholar 

  50. M. Born, V. Fock, Beweis des adiabatensatzes. Zeitschrift für Physik, Springer 51(3–4), 165–180 (1928)

    Article  ADS  MATH  Google Scholar 

  51. J.J. Sakurai, “Modern quantum mechanics,” Addison-Wesley Pub. Co., revised edition, 3-4, 165-180 (1994)

  52. Daniel Schmidtke, Lars Knipschild, Michele Campisi, Robin Steinigeweg, Jochen Gemmer, Stiffness of probability distributions of work and Jarzynski relation for non-Gibbsian initial states. Phys. Rev E 98, 012123 (2018)

    Article  ADS  Google Scholar 

  53. E. Adrian Feiguin, Steven R. White, Time-step targeting methods for real-time dynamics using the density matrix renormalization group. Phys. Rev. B 72, 020404 (2005)

  54. S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemporary Physics, Taylor & Francis 57(4), 545–57 (2016)

    Article  ADS  Google Scholar 

  55. Su. Shanhe, Jinfu Chen, Yuhan Ma, Jincan Chen, Changpu Sun, The heat and work of quantum thermodynamic processes with quantum coherence. Chin. Phys. B 27, 060502 (2018)

    Article  ADS  Google Scholar 

  56. E. Fermi, Thermodynamics (Dover, New York, 1956)

    MATH  Google Scholar 

  57. L.D. Landau, Zur Theorie der Energieübertragung II. Phys. Z. Sowjetunion 2, 46 (1932)

    MATH  Google Scholar 

  58. C. Zener, Non-adiabatic crossing of energy levels. Proc. R. Soc. A 137, 696 (1932)

    ADS  MATH  Google Scholar 

  59. Artur Ishkhanyan, Matt Mackie, Andrew Carmichael, Phillip L. Gould, Juha Javanainen, Landau-Zener problem for trilinear systems. Phys. Rev. A 69, 043612 (2004)

    Article  ADS  Google Scholar 

  60. N.V. Vitanov, K.-A. Suominen, Nonlinear level-crossing models. Phys. Rev. A 59, 4580 (1999)

    Article  ADS  Google Scholar 

  61. Boyan T. Torosov, Nikolay V. Vitanov, Pseudo-Hermitian Landau-Zener-Stückelberg-Majorana model. Phys. Rev. A 96, 013845 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  62. Hans De Raedt, Product formula algorithms for solving the time dependent Schrödinger equation. Comput. Phys. Rep. 7(1), 0167–7977 (1987)

    Article  Google Scholar 

  63. F. Jin, R. Steinigeweg, H. De Raedt, K. Michielsen, M. Campisi, J. Gemmer, Eigenstate thermalization hypothesis and quantum Jarzynski relation for pure initial states. Phys. Rev. E 94, 012125 (2016)

    Article  ADS  Google Scholar 

  64. Andreas Hartmann, Victor Mukherjee, Wolfgang Niedenzu, Wolfgang Lechner, Many-body quantum heat engines with shortcuts to adiabaticity. Phys. Rev. Research 2, 023145 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ponmurugan.

Appendices

Appendix A: Time-dependent Schrodinger Equation; Numerical Approach

Fig. 9
figure 9

Splitting the total time duration in to ‘n’ equal intervals gives F(t) and the time evolution operators in a sequence. Algorithm to find the time evolution of \(\tilde{\Psi }(t)\) should not change this sequence as the operator F(t) at different instants of time do not commute in general \(\left( \left[ F(t_{a}),F(t_{b})\right] \ne 0; a,b\in \left\{ 0,n\right\} \right) \)

Consider in general, this paper deals with the time evolution of some state \(\tilde{\Psi }(t)\) corresponding to the Schrodinger equation \(i\frac{\partial \tilde{\Psi }(t)}{\partial t}=F(t)\tilde{\Psi }(t)\). F(t) is the generator of time evolution, which represents any of the Hermitian operators \(\mathcal {\hat{H}}_{S}(t),\mathcal {\hat{H}}_{LZ}(t)\) and \(\mathcal {\hat{I}}(t)\). Analytical solution might be existing for some particular F(t). However, a numerical solution is the general possibility for any operator F(t). Calculating the evolution of \(\tilde{\Psi }(t)\) requires enormous computational power. The non-commuting F(t) at different instants of time further restricts the algorithms to follow the F(t) sequentially in time space. In other words, splitting the total time duration (\(\tau \)) in to ‘n’ equal intervals gives a sequence of time evolution operators as explained in Fig. 9. We can define \(F(t_{i})\) at any instant of time \(t_{i}\), where \(i\in \left\{ 0,n\right\} \), the initial time \(t_{0}=0\) and the final time \(t_{n}=\tau \). By defining a step by step evolution operator \(U(t_{i};t_{i+1})\), we can construct the total evolution operator as [51]

$$\begin{aligned} U(0;\tau )=\prod _{i=0}^{n-1}U(t_{i};t_{i+1}), \end{aligned}$$
(40)

where

$$\begin{aligned} U(t_{i};t_{i+1})=exp\left( -i\int _{t_{i}}^{t_{i+1}}F(t)dt\right) . \end{aligned}$$
(41)

For a very large value of ‘n’, we can approximate that the operator \(F(t)=F\left( \frac{t_{i}+t_{i+1}}{2}\right) \) is fixed in between \(t_{i}\) and \(t_{i+1}\) for all \(i\in \left\{ 0,n-1\right\} \) [62, 63]. The approximation of fixed generator for smaller intervals of time reduces the time evolution operator to

$$\begin{aligned} U(t_{i}:t_{i+1})=exp\left( -i\cdot F\left( \frac{t_{i}+t_{i+1}}{2}\right) \cdot (t_{i+1}-t_{i})\right) . \end{aligned}$$
(42)

Iteratively finding \(U\left( t_{i};t_{i+1}\right) \) gives the time evolution operator for the total duration, \(U(0;\tau )\), which gives the final state \(\tilde{\Psi }(\tau )\) from \(\tilde{\Psi }(0)\) using the equation, \(\tilde{\Psi }(\tau )=U(0;\tau )\tilde{\Psi }(0)\). The step by step algorithm is as follows,

  • Step 1: Initialize the variables \(n,t_{0}\) and \(t_{n}\)

  • Step 2: Define the set of \(n+1\) values in between \(t_{0}\) and \(t_{n}\)

  • Step 3: Iteratively find the values of \(F\left( \frac{t_{i}+t_{i+1}}{2}\right) \) and \(U(t_{i};t_{i+1})\) by looping over all the values of ’i’.

  • Step 4: Find \(U(0;\tau )\), using Eq. (40).

  • Stap 5: Find \(\tilde{\Psi }(\tau )\) from \(\tilde{\Psi }(0)\) by applying \(U(0;\tau )\).

We have executed the above algorithm for \(F(t)=\mathcal {\hat{H}}_{S}(t), \mathcal {\hat{H}}_{LZ}(t)\) and \(\mathcal {\hat{I}}\). The initial time is set to 0 setting \(\tau \) as the total duration of the process. Also, the algorithm is implemented for various \(\tau \) values. We split the total time duration to 10000 small intervals (\(n=10001\)), which gave the precision up to three decimal points. This iterative approach always preserve the sequence of time evolution operator necessary for the non-commuting generators of time evolution. This method is partially inspired from the numerical approach explained in the Ref. [52], which update the evolved state using the fourth-order Runge-Kutta iteration method. Instead of updating the evolved state, we update the evolution operator, which reduces the computational complexity by avoiding the use of fourth-order Runge-Kutta method for each loop of iteration.

Appendix B: Fidelity analysis for two more z(t) protocols

Fig. 10
figure 10

Fidelity of the unitary processes using LR invariant is plotted against the cost ratio, \(\frac{C_{I}}{C_{LZ}}\) for time duration, \(\tau =1.0\). The corresponding fidelity of the QHE with LZ Hamiltonian is included in each plot for comparison. The change in the energy gap is fixed corresponding to the ratio, a \(\frac{\epsilon _{2}}{\epsilon _{1}}=0.4\) and b \(\frac{\epsilon _{2}}{\epsilon _{1}}=0.6\). \(C_{I}\) is changed by the parametric variation of x(t), y(t) and z(t) (i.e., \(z_{1}(t)\) or \(z_{2}(t)\)) with constant X given by Eqs. (28), (29), (43), (44) and (21) respectively

We have been using the protocol given in Eq. (35) to analyze the cost and performance of invariant-based STA enabled QHE. A natural question arises is the variation in efficiency and work for some other protocol for z(t). The dependence of performance on the selection of z(t) is completely arbitrary resulting from the random path of evolution. However, we can analyze such variations in performance by constituting different protocols for z(t) obeying the conditions given in Eqs. (32),(33) and (34). In this appendix, we consider two more feasible protocols for z(t),

$$\begin{aligned} z_{1}(t)= & {} z(0)+\left( z(\tau )-z(0)\right) sin^{2}\left[ \frac{\pi }{2}sin^{2}\left( \frac{\pi t}{2\tau }\right) \right] , \end{aligned}$$
(43)
$$\begin{aligned} z_{2}(t)= & {} z(0)+30\left( z(\tau )-z(0)\right) \left( \frac{t}{\tau }\right) ^{4}-54\left( z(\tau )-z(0)\right) \left( \frac{t}{\tau }\right) ^{5}+25\left( z(\tau )-z(0)\right) \left( \frac{t}{\tau }\right) ^{6}, \end{aligned}$$
(44)

where, \(z_{1}(t)\) is inspired from Ref. [64] and we have constructed \(z_{2}(t)\) by our own. Although it is labeled as \(z_{1}(t)\) and \(z_{2}(t)\) for distinguishability, but it follows all the necessary conditions for z(t) and can replace z(t) in Sect. (4) to analyze the performance of the engine.

The performance analysis in Sect. 4, shows the linear dependence of work and efficiency on the fidelity of unitary process (i.e., the heat exchanged, that characterizing the heat engine is a linear function of fidelity). Thus, the comparison of fidelity among LZ dynamics and Invariant dynamics of the engine gives intuitive conclusion regarding the performance of the engine. Figure 10 shows the fidelity of invariant-based STA engine with protocol \(z_{1}(t)\) and \(z_{2}(t)\) along with fidelity of LZ Hamiltonian for comparison. By analyzing the fidelity plots and comparing with Fig. 5, we can conclude that, the both the protocols \(z_{1}(t)\) and \(z_{2}(t)\) cost more than that of the protocol in Eq. (35) to outperform the LZ dynamics. Also, the arbitrariness in dependence of fidelity (equivalently performance) on different protocol is evident from the plot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, T., Ponmurugan, M. The invariant-based shortcut to adiabaticity for qubit heat engine operates under quantum Otto cycle. Eur. Phys. J. Plus 137, 394 (2022). https://doi.org/10.1140/epjp/s13360-022-02592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02592-z

Navigation