Skip to main content
Log in

Memristor-based asymmetric extreme multistable hyperchaotic system with a line of equilibria, coexisting attractors, its implementation and nonlinear active-adaptive projective synchronisation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, flux controlled quadratic memductance-based extreme multistable novel 4D hyperchaotic system and its active-adaptive projective synchronisation control is proposed. The proposed memristor-based extreme multistable hyperchaotic system has unstable line of equilibria and coexisting attractors. Different tools such as phase plane, time series, Lyapunov exponents, Lyapunov spectrum, Lyapunov dimension, Poincaré map and recurrence analysis are used to evidence the different dynamic behaviours of the proposed 4D extreme multistable hyperchaotic system. The system shows twisted leaf shaped unique Poincaré behaviour. Bifurcation plot is used to show the extreme multistability and coexisting behaviour in the proposed hyperchaotic system. Further, a nonlinear active-adaptive control is designed for the projective synchronisation between the proposed hyperchaotic and unknown parameter-based extreme multistable hyperchaotic systems. Active-adaptive control laws are designed by using relevant state variables of both known and unknown parameter-based hyperchaotic systems and required adaptive estimation laws are designed for error convergence. The required global asymptotic stability is ensured via Lyapunov’s theorem of stability. Simulation is presented in MATLAB environment to demonstrate the effective verification of the theoretical approach and the objectives are attained successfully. Finally, the hardware implementation of proposed hyperchaotic system is accomplished using NI-MyRIO 1900 processor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

All data generated or analysed data during this study are included in the manuscript.

References

  1. G. Chen, X. Dong, From chaos to order: methodologies, perspectives and applications (World Scientific, Singapore, 1998), pp. 311–387

    Book  Google Scholar 

  2. P.P. Singh, K.M. Singh, B.K. Roy, Eur. Phys. J. Special Topics 227, 731–746 (2018)

    Article  ADS  Google Scholar 

  3. P.P. Singh, B.K. Roy, Annual Reviews in Control 45, 152–165 (2018)

    Article  MathSciNet  Google Scholar 

  4. Q. Lai, Z. Wan, H. Zhang, G. Chen, IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3146570

    Article  Google Scholar 

  5. Q. Lai, H. Zhang, P.D.K. Kuate, G. Xu, X.-W. Zhao, Appl. Intell. (2022). https://doi.org/10.1007/s10489-021-03071-1

    Article  Google Scholar 

  6. P.P. Singh, J.P. Singh, B.K. Roy, IETE J. Research 63, 853–869 (2017)

    Article  Google Scholar 

  7. J.P. Singh, B.K. Roy, Trans. Inst. Meas. Control 40, 3573–3586 (2017)

    Article  Google Scholar 

  8. P.P. Singh, J.P. Singh, B.K. Roy, Int. J. Control Theory Application 9, 171–183 (2016)

    Google Scholar 

  9. P.P. Singh, B.K. Roy, C. Volos, (2021) Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications. In: Volos and Pham eds. Elsevier Academic Press: United Kingdom. 9: 183-205.

  10. P.P. Singh, J.P. Singh, B.K. Roy, Int. J. Control Theory Application 8, 995–1004 (2015)

    Google Scholar 

  11. Q. Lai, B. Norouzi, F. Liu, Chaos, Solitons. Fractals 114, 230–245 (2020)

    Article  Google Scholar 

  12. P.P. Singh, J.P. Singh, B.K. Roy, Chaos. Solitons and Fractals 69, 31–39 (2014)

    Article  ADS  Google Scholar 

  13. J.P. Singh, B.K. Roy, S. Jafari, Chaos, Solitons. Fractals 106, 243–257 (2018)

    Article  Google Scholar 

  14. J.P. Singh, B.K. Roy, Optik-Int. J. Light and Electron Optics 145, 209–217 (2017)

    Article  Google Scholar 

  15. J.P. Singh, B.K. Roy, Int. J. Dyn. Control 45, 1–10 (2017)

    Google Scholar 

  16. P.P. Singh, J.P. Singh, M. Borah, B.K. Roy, IFAC-PapersOnLine 49, 522–525 (2016)

    Article  Google Scholar 

  17. S. Jafari, V.T. Pham, T. Kapitaniak, Int. J. Bifurcation Chaos 26, 1650031–1650036 (2016)

    Article  ADS  Google Scholar 

  18. S. Jafari, J.C. Sprott, F. Nazarimehr, Eur. Phys. J. Special Topics 224, 1469–1476 (2015)

    Article  ADS  Google Scholar 

  19. Q. Lai, Z. Wan, P.D.K. Kuate, Elect. Lett. 56, 1044–1046 (2020)

    Article  ADS  Google Scholar 

  20. Z. Wei, I. Moroz, J.C. Sprott, A. Akgul, W. Zhang, Chaos 27, 033101–033108 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Q. Lai, Z. Wan, L.K. Kengne, P.D.K. Kuate, C. Chen, IEEE Trans. Circuits Syst. II: Express Briefs 68, 2197–2201 (2021)

    Article  Google Scholar 

  22. Z. Wei, W. Zhang, Z. Wang, M. Yao, Int. J. Bifurcation Chaos 25, 1550028–1550036 (2015)

    Article  ADS  Google Scholar 

  23. Leon O. Chua, IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  24. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  25. L. Wang, T. Dong, M.F. Ge, Applied Mathematics and Computation 347, 293–305 (2019)

    Article  Google Scholar 

  26. K. Usha, P.A. Subha, Bio Systems 178, 1–9 (2019)

    Article  Google Scholar 

  27. Y. Cao, Y. Cao, S. Wen, T. Huang, Z. Zeng, Neural Networks 109, 159–167 (2019)

    Article  Google Scholar 

  28. Q. Lai, C. Lai, P.D.K. Kuate, C. Li, S. He, Int. J. Bifurcation Chaos 32, 2250042 (2022)

    Article  ADS  Google Scholar 

  29. Z. Li, C. Zhou, M. Wang, Int. J. Electron. Commun. (AEU) 100, 127–137 (2019)

    Article  Google Scholar 

  30. V. Sundarapandian, A. Sambas, M. Mamat, M. Sanjaya, Arch. Contr. Sci. 100, 541–554 (2017)

    Google Scholar 

  31. M. Itoh, Leon O. Chua, Int. J. Bifurcation Chaos 18, 3183–3206 (2008)

    Article  ADS  Google Scholar 

  32. B. Muthuswamy, IETE Tech. Rev. 26, 1–16 (2009)

    Article  Google Scholar 

  33. Y. Zhong Qi-Shui, Y-B, Y Jue-Bang. Chinese Phys., Lett. 27: 8250. (2010)

  34. B. Muthuswamy, Leon O. Chua. Int. J. Bifurcation Chaos 20, 1567–1580 (2010)

    Article  ADS  Google Scholar 

  35. D. Batas, H. Fiedler, IEEE Trans. Nanotechnol. 10, 250–255 (2011)

    Article  ADS  Google Scholar 

  36. H. Kim, MPd. Sah, C. Yang, S. Cho, Leon O. Chua, IEEE Trans. Circ. Syst. I: Regular Papers. 59, 2422–2431 (2012)

    Google Scholar 

  37. Y. Li, X. Huang, M. Guo, Math. Probl. Eng. 2013, 398306 (2013)

    Google Scholar 

  38. H. Li, L. Wang, S. Duan, Int. J. Bifurcation Chaos (2014). https://doi.org/10.1142/S0218127414500990

    Article  Google Scholar 

  39. S.C. Yener, H.H. Kuntman, Radio Eng. 23, 1140–1149 (2014)

    Google Scholar 

  40. X. Hu, S. Duan, J. Eng. Sci. Technol. Rev. 8, 17–23 (2015)

    Article  Google Scholar 

  41. Z. Chen, H. Tang, Z. Wang, Q. Zhang, J. Han, J. Appl. Anal. Comput. 5, 251–261 (2015). https://doi.org/10.11948/2015023

    Article  MathSciNet  Google Scholar 

  42. J. Ma, Z. Chen, Z. Wang, Q. Zhang, Nonlinear Dyn. 81, 1275–1288 (2015)

    Article  Google Scholar 

  43. Xu. Ya-Ming, Li-Dan. Wang, Shu-Kai. Duan, Acta Phys. Sini. 65, 120503 (2016). https://doi.org/10.7498/aps.65.120503

    Article  Google Scholar 

  44. A.H. Abolmasoumi, S. Khosravinejad, Int. J. Comput. Theory Eng. 8, 506–511 (2016)

    Article  Google Scholar 

  45. F. Yuan, G. Wang, X. Wang, Chaos 26, 073107 (2016). https://doi.org/10.1063/1.4958296

    Article  ADS  MathSciNet  Google Scholar 

  46. W. Xiong, J. Huang, Adv. Differen. Equat. 26, 1–9 (2016). https://doi.org/10.1186/s13662-016-0789-3

    Article  Google Scholar 

  47. Q. Hu, Y. Yu, F. Lie, H. Zhang, Youth Acad. Annual Conf. Chin. Associat. Automat 31 (Wuhan, China, 2016), pp. 11–13

    Google Scholar 

  48. C. Wang, H. Xia, L. Zhou, Pramana-J. Phys. 88, 34–45 (2017). https://doi.org/10.1007/s12043-016-1342-3

    Article  ADS  Google Scholar 

  49. S.C. Yener, C. Barbaros, R. Mutlu, E. Karakulak, Acta Phys. Polonica A 132, 134–145 (2017). https://doi.org/10.12693/APhysPolA.132.1058

    Article  Google Scholar 

  50. K. Rajagopal, L. Guessas, A. Karthikeyan, A. Srinivasan, G. Adam, Complexity (2017). https://doi.org/10.1155/2017/1892618

    Article  Google Scholar 

  51. P. Prakash, J.P. Singh, B.K. Roy, IFAC PapersOnLine 51, 1–6 (2018)

    Article  Google Scholar 

  52. K. Ding, Complexity (2017). https://doi.org/10.1155/2018/5431619

    Article  Google Scholar 

  53. K. Rajagopal, H. Jahanshahi, M. Varan, I. Bayir, V.T. Pham, S. Jafari, A. Karthikeyan, Int. J. Electron. Commun. (AEU) 94, 55–68 (2018)

    Article  Google Scholar 

  54. K. Rajagopal, S. Arun, A. Karthikeyan, P. Duraisamy, A. Srinivasan, Int. J. Electron. Commun. (AEU) 95, 249–255 (2018)

    Article  Google Scholar 

  55. B. Wang, F.C. Zou, J. Cheng, Optik 154, 538–544 (2018)

    Article  ADS  Google Scholar 

  56. B. Wang, F.C. Zou, Y. Zhang, Optik 172, 873–878 (2018)

    Article  ADS  Google Scholar 

  57. X. Wang, M. Gao, X. Min, Z. Lin, H. Ho-ChingIu, IEEE Access. 8, 182240–48 (2020)

    Article  Google Scholar 

  58. P.D.K. Kuate, Q. Lai, H. Fotsin, Eur. Phys. J. Special Topics 228, 2171–2184 (2019)

    Article  ADS  Google Scholar 

  59. K. Rajagopal, S. Jafari, A. Karthikeyan, A. Srinivasan, B. Ayele, Circuits Syst Signal Process 37, 3702–3724 (2018)

    Article  Google Scholar 

  60. F. Yu, S. Qian, Xi Chen, Y. Huang, Li Liu, C. Shi, S. Cai, Y. Song. (2020). Int. J. Bifurcation Chaos. 30: 2050147-2050172

  61. F. Yu, L. Liu, S. Qian, L. Li, Y. Huang, C. Shi, S. Cai, X. Wu, S. Du, Q. Wan, Complexity. (2020). https://doi.org/10.1155/2020/8034196

    Article  Google Scholar 

  62. F. Yu, S. Qian, Xi Chen, Y. Huang, S. Cai, J. Jin, S. Du. Complexity.(2021). 10.1155/2021/6683284

  63. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Physics Reports 438, 237–329 (2020)

    Article  ADS  Google Scholar 

  64. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (University Press, Cambridge, 1997)

    MATH  Google Scholar 

  65. J. E. Slotine, W. Li, Applied nonlinear control, Prentice Hall Inc., Englewood Cliffs, New Jersey (1991) 100-154, 276-311

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. P. Singh originated the idea, performed the analysis, numerical computations and wrote the draft, and A. Rai participated in physical realisation presented in the manuscript. B. K. Roy guided in the concept, corrected the primary and revised manuscript.

Corresponding author

Correspondence to Piyush Pratap Singh.

Ethics declarations

Conflict of interest

Authors do not have any financial and non-financial interests to declare. The authors did not receive support from any organisation for the submitted work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.P., Rai, A. & Roy, B.K. Memristor-based asymmetric extreme multistable hyperchaotic system with a line of equilibria, coexisting attractors, its implementation and nonlinear active-adaptive projective synchronisation. Eur. Phys. J. Plus 137, 875 (2022). https://doi.org/10.1140/epjp/s13360-022-03063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03063-1

Navigation