Skip to main content
Log in

Exotic rogue waves in an extended nonlocal nonlinear Schrödinger equation with self-induced PT-symmetric potentials

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider the spectral problem and adjoint problem for an extended nonlocal nonlinear Schrödinger (NLS) equation. Utilizing the Schur polynomial theory and the Darboux transformation, we derive the high-order rogue wave solutions by providing three types of wave functions and adjoint ones. Our results show that the nonsingular and singular solutions, respectively, correspond to single peak rogue wave and collapsing rogue wave, which are two different rogue wave phenomena. The solutions obtained in this work exhibit rich rogue wave patterns, most of which have no counterparts in the extended local NLS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. C.M. Bender, S. Boettcher, Real spectra in non-Hermitain Hamiltonians having \(\cal{PT}\) symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. C.M. Bender, Introduction to \(\cal{PT}\)-symmetric quantum theory. Contemp. Phys. 46, 277 (2005)

    Article  ADS  Google Scholar 

  3. H. Cartarius, G. Wunner, Model of a \(\cal{PT}\)-symmetric Bose-Einstein condensate in a \(\delta\)-function double-well potential. Phys. Rev. A 86, 013612 (2012)

    Article  ADS  Google Scholar 

  4. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Experimental study of active LRC circuits with \(\cal{PT}\) symmetries. Phys. Rev. A 84, 040101 (2011)

    Article  ADS  Google Scholar 

  5. T. Gadzhimuradov, A. Agalarov, Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93, 062124 (2016)

    Article  ADS  Google Scholar 

  6. D.R. Nelson, N.M. Shnerb, Non-Hermitian localization and population biology. Phys. Rev. E 58, 1383 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. M.J. Ablowitz, Z.H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  ADS  Google Scholar 

  8. Y. Rybalko, D. Shepelsky, Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrödinger equation for a family of step-like initial data. Commun. Math. Phys. 382, 87–121 (2021)

    Article  ADS  MATH  Google Scholar 

  9. Y. Rybalko, D. Shepelsky, Long-time asymptotics for the nonlocal nonlinear Schrödinger equation with step-like initial data. J. Differ. Equ. 270, 694–724 (2021)

    Article  ADS  MATH  Google Scholar 

  10. Z.Y. Yan, Y. Chen, Z. Wen, On stable solitons and interactions of the generalized Gross-Pitaevskii equation with PT-and non-PT-symmetric potentials. Chaos 26, 083109 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Li, Z.T. Xu, Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91, 033202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. X.Y. Wen, Z.Y. Yan, Y.Q. Yang, Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. B. Yang, Y. Chen, Several reverse-time integrable nonlocal nonlinear equations: rogue-wave solutions. Chaos 28, 053104 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Y.S. Zhang, D.Q. Qiu, Y. Cheng, J.S. He, Rational solution of the nonlocal nonlinear Schrödinger equation and its application in optics. Rom. J. Phys. 62, 108 (2017)

    Google Scholar 

  15. Z.X. Zhou, Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 62, 480–488 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A.S. Fokas, Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J.L. Ji, Z.N. Zhu, On a nonlocal modified Korteweg-de Vries equation: integrability, darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 42, 699–708 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. W.X. Ma, Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations. Proc. Am. Math. Soc. 149, 251–263 (2021)

    Article  MATH  Google Scholar 

  19. X. Zhang, Y. Chen, Y. Zhang, Breather, lump and X soliton solutions to nonlocal KP equation. Comput. Math. Appl. 74, 2341–2347 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Lou S, Alice-Bob systems, \(P_{s}-T_{d}-C\) principles and multi-soliton solutions. arXiv preprint arxiv:1603.03975 (2016)

  21. X. Shi, J. Li, C. Wu, Dynamics of soliton solutions of the nonlocal Kundu-nonlinear Schrödinger equation. Chaos 29, 023120 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Kundu, Integrable hierarchy of higher nonlinear Schrödinger type equations. SIGMA 2, 078 (2006)

    MathSciNet  MATH  Google Scholar 

  23. F. Calogero, W. Eckhaus, Nonlinear evolution equations, rescalings, model PDEs and their integrability: I. Inverse Probl. 3, 229 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433–3438 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Zhang, C. Li, J.S. He, Darboux transformation and Rogue waves of the Kundu-nonlinear Schrödinger equation. Math. Method Appl. Sci. 38, 2411–2425 (2015)

    Article  ADS  MATH  Google Scholar 

  26. X.B. Wang, B. Han, The Kundu-nonlinear Schrödinger equation: breathers, rogue waves and their dynamics. J. Phys. Soc. Jpn. 89, 014001 (2020)

    Article  ADS  Google Scholar 

  27. X.B. Wang, B. Han, Pure soliton solutions of the nonlocal Kundu-nonlinear Schrödinger equation. Theor. Math. Phys. 206, 40 (2021)

    Article  MATH  Google Scholar 

  28. V.E. Zakharov, A.B. Shabat, Integration of nonlinear equations of mathematical physics by the method of inverse scattering. Funkt. Anal. Appl. Prilozheniya 13, 13 (1979)

    MathSciNet  Google Scholar 

  29. N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  ADS  MATH  Google Scholar 

  30. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F.T. Arecchi, Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. B. Yang, J. Yang, Rogue waves in the nonlocal \(\cal{PT}\)-symmetric nonlinear Schrödinger equation. Lett. Math. Phys. 109, 945–973 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. W.X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Z. Yan, Vector financial rogue waves. Phys. Lett. A 375, 4274–4279 (2011)

    Article  ADS  MATH  Google Scholar 

  34. Z.D. Dai, Y. Huang, X. Sun, D.L. Li, Z.H. Hu, Exact singular and non-singular soliton-wave solutions for Kadomtsev-Petviashvili equation with p-power of nonlinearity. Chaos Solitons Fractals 40, 946–951 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Z. Zhao, L. He, M-lump and hybrid solutions of a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation. Appl. Math. Lett. 111, 106612 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Guo, Z. Dai, C. Guo, Lump solutions and interaction solutions for (2+1)-dimensional KPI equation. Front Math China 9, 1–12 (2021)

    ADS  Google Scholar 

  37. A.M. Wazwaz, Negative-order integrable modified KdV equations of higher orders. Nonlinear Dyn. 93, 1371–1376 (2018)

    Article  MATH  Google Scholar 

  38. X.W. Yan, S.F. Tian, M.J. Dong, T.T. Zhang, Rogue waves and their dynamics on bright-dark soliton background of the coupled higher order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 88, 074004 (2019)

    Article  ADS  Google Scholar 

  39. S.F. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    Article  ADS  MATH  Google Scholar 

  40. X.B. Wang, Y. Chen, B. Han, S.F. Tian, Exotic localized vector waves in the multicomponent nonlinear integrable systems. Sci. Sin. Math. 51, 1–18 (2021). (in Chinese)

    Google Scholar 

  41. J.S. He, Y.S. Tao, K. Porsezian, A.S. Fokas, Rogue wave management in an inhomogeneous nonlinear fibre with higher order effects. J. Nonlinear Math. Phys. 20, 407–419 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. J.S. He, H.R. Zhang, L.H. Wang, K. Porsezian, A.S. Fokas, Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  ADS  Google Scholar 

  43. G. Mu, Z. Qin, R. Grimshaw, N. Akhmediev, Intricate dynamics of rogue waves governed by the Sasa-Satsuma equation. Phys. D 402, 132252 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Z.Y. Qin, G. Mu, Matter rogue waves in an \(F=1\) spinor Bose-Einstein condensate. Phys. Rev. E 86, 036601 (2012)

    Article  ADS  Google Scholar 

  45. B. Yang, J. Yang, Rogue wave patterns in the nonlinear Schrödinger equation. Phys. D 419, 132850 (2021)

    Article  MATH  Google Scholar 

  46. B. Yang, J. Chen, J. Yang, Rogue waves in the generalized derivative nonlinear Schrödinger equations. J. Nonlinear Sci. 30, 3027–3056 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. C.L. Terng, K. Uhlenbeck, Bäcklund transformations and loop group actions. Commun. Pure Appl. Math. 53, 1–75 (2000)

    Article  MATH  Google Scholar 

  48. Y. Yang, Z. Yan, B.A. Malomed, Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Chaos 25, 103112 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. S. Xu, J.S. He, The rogue wave and breather solution of the Gerdjikov-Ivanov equation. J. Math. Phys. 53, 063507 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. S. Liu, L. Wang, W. Liu, D. Qiu, J.S. He, The determinant representation of an \(N\)-fold Darboux transformation for the short pulse equation. J. Nonlinear Math. Phys. 24, 183–194 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. G. Zhang, Z. Yan, X.Y. Wen, Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations. Proc. R. Soc. A 473, 20170243 (2017)

    Article  ADS  MATH  Google Scholar 

  52. B. Guo, L. Ling, Q.P. Liu, Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant (No.11971133, No.12101159). We are grateful to the reviewers for their encouraging suggestions that were helpful in improving this paper further.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Wei Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

$$\begin{aligned} D_{11}^{[1]}&=-16z^4t^2+8z^3g_{0}t-8z^3l_{0}t+4z^2g_{0}l_{0}-4{i}xz^2g_{0}-4{i}xz^2l_{0}+16{i}z^2t\\ &\quad -4{i}zg_{0}-4x^2z^2+4{i}zl_{0}+3,\\ D_{12}^{[1]}&=16t^2z^4+4{i}xz^2g_{0}+4{i}xz^2l_{0}-8tz^3g_{0}+8tz^3l_{0}+4x^2z^2-4z^2g_{0}l_{0}+1,\\ D_{21}^{[2]}&=48{i}t^2z^5l_{0}+4{i}z^3l_{0}^3+24{i}tz^4l_{0}^2-24{i}tx^2z^4-6{i}tz^2+48t^2xz^5-12{i}x^2z^3l_{0}\\&\quad -48{i}tz^3x+48tz^4l_{0}x+32{i}t^3z^6+48t^2z^4-4x^3z^3+12xz^3l_{0}^2+48tz^3l_{0}\\&\quad +12z^2l_{0}^2-12x^2z^2-24{i}z^2l_{0}x+6{i}zl_{1}-9{i}zl_{0}-9xz-3,\\ D_{22}^{[2]}&=32{i}t^3z^5+48{i}t^2z^4l_{0}-24{i}tx^2z^3+24{i}tz^3l_{0}^2+3{i}l_{0}+48t^2xz^4-12{i}x^2z^2l_{0}\\&\quad +4{i}z^2l_{0}^3+48tz^3xl_{0}+12xz^2l_{0}^2-4x^3z^2+18{i}zt+6{i}l_{1}+3x,\\ D_{31}^{[2]}&=-48{i}t^2xz^5g_{0}+48{i}t^2xz^5l_{0}-12{i}xz^3g_{0}l_{0}^2+48t^2z^3-64t^4z^7-48t^2z^5l_{0}^2\\&\quad -48{i}txz^4g_{0}l_{0}+32t^3z^6g_{0}-96t^3z^6l_{0}-8tz^4l_{0}^3-12x^2z^3l_{0}^2-12tz^2l_{1}\\&\quad +4z^3g_{0}l_{0}^3+6zg_{0}l_{1}-48{i}txz^2-12{i}z^2g_{0}l_{0}^2+6{i}l_{1}+64{i}t^3xz^6-4{i}xz^3l_{0}^3\\&\quad -24tx^2z^4g_{0}-24tx^2z^4l_{0}+24tz^4g_{0}l_{0}^2-3{i}l_{0}+4{i}x^3z^3g_{0}+12{i}x^3z^3l_{0}\\&\quad +144{i}t^2z^4l_{0}+12{i}x^2z^2g_{0}+12{i}x^2z^2l_{0}+9zl_{0}^2-48{i}t^2z^4g_{0}-24xz^2g_{0}l_{0}\\&\quad -9zg_{0}l_{0}+4{i}z^2l_{0}^3+128{i}t^3z^5+96t^2xz^4+48t^2z^5g_{0}l_{0}-9{i}xzl_{0}+3{i}g_{0}\\&\quad -6tz^2g_{0}-12x^2z^3g_{0}l_{0}+48{i}tz^3l_{0}^2-48{i}tz^3g_{0}l_{0}+48tz^3xl_{0}-48txz^3g_{0}\\&\quad +4x^4z^3-6{i}xzl_{1}+9{i}xzg_{0}+54tz^2l_{0}+8x^3z^2+16{i}tx^3z^4,\\ D_{32}^{[2]}&=48{i}t^2xz^4l_{0}-12{i}xz^2g_{0}l_{0}^2-48{i}txz^3g_{0}l_{0}+4z^2g_{0}l_{0}^3-3{i}xg_{0}-12x^2z^2g_{0}l_{0}\\&\quad -24tx^2z^3l_{0}+3{i}xl_{0}-12x^2z^2l_{0}^2-48t^2z^2+3g_{0}l_{0}+4x^4z^2-64t^4z^6-3l_{0}^2\\&\quad +4{i}x^3z^2g_{0}-4{i}xz^2l_{0}^3+64{i}t^3xz^5+16{i}tx^3z^3+18tzg_{0}-18tzl_{0}-8tz^3l_{0}^3\\&\quad +48t^2z^4g_{0}l_{0}-24tx^2z^3g_{0}+12{i}x^3z^2l_{0}-48t^2z^4l_{0}^2+32t^3z^5g_{0}-96t^3z^5l_{0}\\&\quad -6{i}xl_{1}-12tzl_{1}-48{i}t^2xz^4g_{0}+24tz^3g_{0}l_{0}^2+6g_{0}l_{1}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, XW., Chen, Y. Exotic rogue waves in an extended nonlocal nonlinear Schrödinger equation with self-induced PT-symmetric potentials. Eur. Phys. J. Plus 137, 1346 (2022). https://doi.org/10.1140/epjp/s13360-022-03536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03536-3

Navigation