Skip to main content
Log in

Numerical simulation to model the effect of injection velocity on the thermo-hydraulic behavior of the microchannel fluid flow via Navier–Stokes equations joined with the slip velocity boundary condition

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The injection is one of the main factors to improve the heat transfer in the macro and microscale devices, especially in microchannels. The present research focuses on the impacts of injection velocity on heat transfer and fluid flow by utilizing computational fluid dynamics. The results claimed that the injections intensified both thermal and hydraulic gradient next to the wall in front of injection locations. Furthermore, the findings showed that there is a 25.22% enhancement in heat transfer in a microchannel with injection. When the injection was released in the microchannel at a higher velocity, a higher heat transfer was achieved While the lower Reynolds number (Re = 5) resulted in minimal heat transfer, at a higher Reynolds number (Re = 100) the microchannel achieved about 328% improvement. Moreover, increasing the present nanofluid volume fraction resulted in a higher heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

Abbreviations

\(C\) p :

Specific heat\((\frac{\mathrm{J }}{\mathrm{kg}.\mathrm{K}})\)

h :

Microchannel height (um)

H :

Dimensionless microchannel

HT:

Heat transfer (W)

l :

Microchannel length (um)

L :

Dimensionless microchannel length

Nu:

Nusselt number

\(\overline{p}\) :

Pressure (Pa)

P :

Dimensionless pressure

Pr:

Prandtl number

Re:

Reynolds number

T :

Temperature (K)

u :

Horizontal velocity\((\frac{\mathrm{m }}{\mathrm{s}})\)

U :

Dimensionless horizontal velocity

u s :

Slip velocity\((\frac{\mathrm{m }}{\mathrm{s}})\)

U s :

Dimensionless slip velocity

v :

Vertical velocity\((\frac{\mathrm{m }}{\mathrm{s}})\)

V :

Dimensionless vertical velocity

X, Y :

Dimensionless horizontal/vertical coordinates

z :

Distance to rib (um)

\({\beta }^{*}\) :

Dimensionless slip coefficient

β :

Slip coefficient (mm)

φ :

Volume fraction of nanoparticles (%)

µ :

Dynamic viscosity (\(\frac{\mathrm{N}.\mathrm{s }}{{\mathrm{m}}^{2}}\))

θ :

Dimensionless temperature

ρ :

Density\((\frac{\mathrm{kg }}{{\mathrm{m}}^{3}})\)

ϑ :

Kinematic viscosity \((\frac{{\mathrm{m}}^{2} }{\mathrm{s}})\)

α :

Thermal diffusivity

ave:

Average

c :

Cold

eff:

Effective

f :

Fluid

h :

Hot

i :

Inlet

nf:

Nanofluid

s :

Slip

References

  1. M. Dinarvand, M. Sohrabi, S.J. Royaee, V. Zeynali, Degradation of phenol by heterogeneous Fenton process in an impinging streams reactor with catalyst bed. Asia-Pac. J. Chem. Eng. 12, 631–639 (2017)

    Article  Google Scholar 

  2. N. Dinarvand, H. Khanahmad, S.M. Hakimian, A. Sheikhi, B. Rashidi, H. Bakhtiari et al., Expression and clinicopathological significance of lipin-1 in human breast cancer and its association with p53 tumor suppressor gene. J. Cell. Physiol. 235, 5835–5846 (2020)

    Article  Google Scholar 

  3. N. Dinarvand, H. Khanahmad, S.M. Hakimian, A. Sheikhi, B. Rashidi, M. Pourfarzam, Evaluation of long-chain acyl-coenzyme A synthetase 4 (ACSL4) expression in human breast cancer. Res. Pharm. Sci. 15, 48 (2020)

    Article  Google Scholar 

  4. B. Bagheri, M. Zargari, F. MeShKInI, K. DInarvand, V. Mokhberi, S. Azizi et al., Uric acid and coronary artery disease, two sides of a single coin: a determinant of antioxidant system or a factor in metabolic syndrome. J. Clin. Diagn. Res. JCDR 10, OC27 (2016)

    Google Scholar 

  5. B. Bagheri, F. Meshkini, K. Dinarvand, Z. Alikhani, M. Haysom, M. Rasouli, Life psychosocial stresses and coronary artery disease. Int. J. Prev. Med. 7, 106 (2016)

    Article  Google Scholar 

  6. N. Dinarvand, M. Rasouli, F. Meshkini, M. Zargari, Investigation of antioxidant status in coronary artery disease patients. Trends Med. Sci. (2021). https://doi.org/10.5812/tms.115238

    Article  Google Scholar 

  7. D. Bahrami, M. Bayareh, Impacts of channel wall twisting on the mixing enhancement of a novel spiral micromixer. Chem. Papers 76(9), 1–12 (2021)

    Google Scholar 

  8. M. Bayareh, An updated review on particle separation in passive microfluidic devices. Chem. Eng. Process.-Process Intensif. 153, 107984 (2020)

    Article  Google Scholar 

  9. A. Usefian, M. Bayareh, Numerical and experimental study on mixing performance of a novel electro-osmotic micro-mixer. Meccanica 54, 1149–1162 (2019)

    Article  Google Scholar 

  10. M. Bayareh, M.N. Esfahany, N. Afshar, M. Bastegani, Numerical study of slug flow heat transfer in microchannels. Int. J. Therm. Sci. 147, 106118 (2020)

    Article  Google Scholar 

  11. M. Bayareh, S. Dabiri, A. Ardekani, Interaction between two drops ascending in a linearly stratified fluid. Eur. J. Mech. B/Fluids 60, 127–136 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Z. Goodarzi, A.A. Nadooshan, M. Bayareh, Numerical investigation of off-centre binary collision of droplets in a horizontal channel. J. Braz. Soc. Mech. Sci. Eng. 40, 1–10 (2018)

    Article  Google Scholar 

  13. S.M. Masiri, M. Bayareh, A.A. Nadooshan, Pairwise interaction of drops in shear-thinning inelastic fluids. Korea-Australia Rheology J. 31, 25–34 (2019)

    Article  Google Scholar 

  14. M. Abedi, A. Asadi, S. Vorotilo, A.S. Mukasyan, A critical review on spark plasma sintering of copper and its alloys. J. Mater. Sci. 56(36), 19739–19766 (2021)

    Article  ADS  Google Scholar 

  15. S. Vorotilo, K. Sidnov, A.S. Sedegov, M. Abedi, K. Vorotilo, D.O. Moskovskikh, Phase stability and mechanical properties of carbide solid solutions with 2–5 principal metals. Comput. Mater. Sci. 201, 110869 (2022)

    Article  Google Scholar 

  16. K.S. Torosyan, A.S. Sedegov, K.V. Kuskov, M. Abedi, D.I. Arkhipov, P.V. Kiryukhantsev-Korneev et al., Reactive, nonreactive, and flash spark plasma sintering of Al2O3/SiC composites—A comparative study. J. Am. Ceram. Soc. 103, 520–530 (2020)

    Article  Google Scholar 

  17. M. Abedi, D. Moskovskikh, and A. Mukasyan, Reactive flash spark plasma sintering of alumina reinforced by silicon carbide nanocomposites: physicochemical study, in International Symposium on Self-Propagating High-Temperature Synthesis, (2019)

  18. Y. Li, R. Kalbasi, Q. Nguyen, M. Afrand, Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures: an experimental study. Powder Technol. 367, 464–473 (2020)

    Article  Google Scholar 

  19. H. Wei, M. Afrand, R. Kalbasi, H.M. Ali, B. Heidarshenas, S. Rostami, The effect of tungsten trioxide nanoparticles on the thermal conductivity of ethylene glycol under different sonication durations: an experimental examination. Powder Technol. 374, 462–469 (2020)

    Article  Google Scholar 

  20. M. Ibrahim, T. Saeed, Y.M. Chu, H.M. Ali, G. Cheraghian, R. Kalbasi, Comprehensive study concerned graphene nano-sheets dispersed in ethylene glycol: experimental study and theoretical prediction of thermal conductivity. Powder Technol. (2021). https://doi.org/10.1016/j.powtec.2021.03.028

    Article  Google Scholar 

  21. D. Bahrami, A.A. Nadooshan, M. Bayareh, Numerical study on the effect of planar normal and Halbach magnet arrays on micromixing. Int. J. Chem. React. Eng. (2020). https://doi.org/10.1515/ijcre-2020-0080

    Article  Google Scholar 

  22. A. Usefian, M. Bayareh, A. Shateri, N. Taheri, Numerical study of electro-osmotic micro-mixing of Newtonian and non-Newtonian fluids. J. Braz. Soc. Mech. Sci. Eng. 41, 1–10 (2019)

    Article  Google Scholar 

  23. Q. Nguyen, D. Bahrami, R. Kalbasi, A. Karimipour, Functionalized multi-walled carbon nano tubes nanoparticles dispersed in water through an magneto hydro dynamic nonsmooth duct equipped with sinusoidal-wavy wall: diminishing vortex intensity via nonlinear navier-stokes equations. Math. Method. Appl. Sci. (2020). https://doi.org/10.1002/mma.6528

    Article  Google Scholar 

  24. Q. Nguyen, D. Bahrami, R. Kalbasi, Q.V. Bach, Nanofluid flow through microchannel with a triangular corrugated wall: heat transfer enhancement against entropy generation intensification. Math. Method. Appl. Sci. (2020). https://doi.org/10.1002/mma.6705

    Article  Google Scholar 

  25. S.S.N. Ayuttaya, C. Chaktranond, P. Rattanadecho, Numerical analysis of electric force influence on heat transfer in a channel flow (theory based on saturated porous medium approach). Int. J. Heat Mass Transf. 64, 361–374 (2013)

    Article  Google Scholar 

  26. F. Pourfattah, M. Motamedian, G. Sheikhzadeh, D. Toghraie, O.A. Akbari, The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water-Al2O3 nanofluid in a tube. Int. J. Mech. Sci. 131, 1106–1116 (2017)

    Article  Google Scholar 

  27. L. Cheng, Y. Zhu, S.S. Band, D. Bahrami, R. Kalbasi, A. Karimipour et al., Role of gradients and vortexes on suitable location of discrete heat sources on a sinusoidal-wall microchannel. Eng. Appl. Comput. Fluid Mech. 15, 1176–1190 (2021)

    Google Scholar 

  28. L. Yang, K. Du, Numerical simulation of nanofluid flow and heat transfer in a microchannel: the effect of changing the injection layout arrangement. Int. J. Mech. Sci. 172, 105415 (2020)

    Article  Google Scholar 

  29. M. Derikvand, M.S. Solari, D. Toghraie, Numerical investigation of the effect of a porous block and flow injection using non-Newtonian nanofluid on heat transfer and entropy generation in a microchannel with hydrophobic walls. Eur. Phys. J. Plus 136, 867 (2021)

    Article  Google Scholar 

  30. L.A. El-Gabry, D.A. Kaminski, Numerical investigation of Jet impingement with cross flow—comparison of yang-shih and standard K–ϵ turbulence models. Numer. Heat Transfer Part A 47, 441–469 (2005)

    Article  ADS  Google Scholar 

  31. D. Bahrami, S. Abbasian-Naghneh, A. Karimipour, A. Karimipour, Efficacy of injectable rib height on the heat transfer and entropy generation in the microchannel by affecting slip flow. Math. Method. Appl. Sci. (2020). https://doi.org/10.1002/mma.6728

    Article  Google Scholar 

  32. E.J. Gutmark, I.M. Ibrahim, S. Murugappan, Dynamics of single and twin circular jets in cross flow. Exp. Fluids 50, 653–663 (2011)

    Article  Google Scholar 

  33. A. Karimipour, D. Bahrami, R. Kalbasi, A. Marjani, Diminishing vortex intensity and improving heat transfer by applying magnetic field on an injectable slip microchannel containing FMWNT/water nanofluid. J. Therm. Anal. Calorim. 144, 2235–2246 (2021)

    Article  Google Scholar 

  34. E. Jalali, A. Karimipour, Simulation the effects of cross-flow injection on the slip velocity and temperature domain of a nanofluid flow inside a microchannel. Int. J. Numer. Meth. Heat Fluid Flow 29, 1546–1562 (2019)

    Article  Google Scholar 

  35. R. Kalbasi, Introducing a novel heat sink comprising PCM and air-Adapted to electronic device thermal management. Int. J. Heat Mass Trans. 169, 120914 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The first author is thankful to the Science Foundation of Donghai Laboratory, China (No. DH-2022KF0302) and this research has received funding from the Norwegian Financial Mechanism 2014-2021 under Project Contract No 2020/37/K/ST8/02748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Li.

Additional information

Focus Point on Rarefied Flows at Micro- and Nano-Scale. Guest editors: A. Karimipour, K. Hooman, A. D'Orazio, R. Kalbasi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Tlili, I., Mahmoud, M. et al. Numerical simulation to model the effect of injection velocity on the thermo-hydraulic behavior of the microchannel fluid flow via Navier–Stokes equations joined with the slip velocity boundary condition. Eur. Phys. J. Plus 137, 1363 (2022). https://doi.org/10.1140/epjp/s13360-022-03565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03565-y

Navigation