Skip to main content
Log in

Design of a compact long counter with an improved response using multiple point-like thermal neutron counters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A long counter with multiple point-like thermal neutron counters positioned in a cylindrical neutron moderator was investigated to improve the performance of the long counter, including flatter fluence response in a wider neutron energy range and also the compactness. The summation of the weighted counts of each thermal neutron counter yields the response of the long counter. In this study, silicon carbide (SiC) coated with 6LiF convertor was used as the thermal neutron counter. In a further effort to balance the performance and structural complexity of long counters with multiple thermal neutron counters, the number and positions of these counters were first studied and optimized. As a result, the long counter with four specially positioned SiC counters showed the best performance. Besides, we also implemented a copper annular into the moderator to compensate for the long counter’s response above a few MeV. The response function was relatively flat in the energy range from 10 eV to 25 MeV, with a relative standard deviation of approximately 1.78%. In addition, the proposed detector can evaluate the neutron energy, allowing it to monitor neutron fluence and neutron energy simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data will be made available upon reasonable request.]

References

  1. E. Amaldi, L.R. Hafstad, M.A. Tuve, Neutron yields from artificial sources. Phys. Rev. 51(11), 896 (1937). https://doi.org/10.1103/PhysRev.51.896

    Article  ADS  Google Scholar 

  2. A.O. Hanson, J.L. McKibben, A neutron detector having uniform sensitivity from 10 keV to 3 MeV. Phys. Rev. 72(8), 673 (1947). https://doi.org/10.1103/PhysRev.72.673

    Article  ADS  Google Scholar 

  3. J. De Pangher, L.L. Nichols, A Precision long counter for measuring fast neutron flux density, BNWL-260. Pacific Northwest Laboratory (1966)

  4. H. Tagziria, D.J. Thomas, Calibration and monte carlo modelling of neutron long counters. Nucl. Instrum. Methods Phys. Res. A 452(3), 470–483 (2000). https://doi.org/10.1016/S0168-9002(00)00448-4

    Article  ADS  Google Scholar 

  5. V. Lacoste, Design of a new long counter for the determination of the neutron fluence reference values at the IRSN AMANDE facility. Radiat. Meas. 45(10), 1250–1253 (2010). https://doi.org/10.1016/j.radmeas.2010.06.026

    Article  Google Scholar 

  6. V. Lacoste, V. Gressier, Experimental characterization of the IRSN long counter for the determination of the neutron fluence reference values at the AMANDE facility. Radiat. Meas. 45(10), 1254–1257 (2010). https://doi.org/10.1016/j.radmeas.2010.07.004

    Article  Google Scholar 

  7. G.D. Kim, H.J. Woo, J.H. Park, T. Yoshihiko, Y. Michio, Characteristics of the KIGAM long-counter for the neutron energy range below 2.5 MeV. J. Korean Phys. Soc. 61, 347–352 (2012). https://doi.org/10.3938/jkps.61.347

    Article  ADS  Google Scholar 

  8. H. Park, J. Kim, K.O. Choi, Long counter and its application for the calibration of the neutron irradiators. Radiat. Prot. Dosim. 161(1–4), 161–165 (2014). https://doi.org/10.1093/rpd/nct351

    Article  Google Scholar 

  9. Y. Tanimura, M. Tsutsumi, M. Yoshizawa, Development of portable long counter with two different moderator materials. Radiat. Prot. Dosim. 161(1–4), 144–148 (2014). https://doi.org/10.1093/rpd/nct345

    Article  Google Scholar 

  10. Y. Li, T. Li, G. Song, M. Mazunga, FDS Team, Response improved for neutron long counter. Radiat. Prot. Dosim. 164(1-2), 93–96 (2015). https://doi.org/10.1093/rpd/ncu348

  11. M. Mazunga, T. Li, Y. Li, B. Hong, Y. Wang, X. Ji, Design of an extended range long counter using super Monte Carlo simulation. Radiat. Prot. Dosim. 175(3), 413–417 (2017). https://doi.org/10.1093/rpd/ncw368

    Article  Google Scholar 

  12. B. Hong, C. Liu, T. Li, Y. Wang, Y. Li, M. Mazunga, Calibrations of the FDS long counter for neutron fluence measurement. Nucl. Technol. 201(2), 174–179 (2018). https://doi.org/10.1080/00295450.2017.1406270

    Article  ADS  Google Scholar 

  13. Y. Li, T. Li, H. Guo, Y. Wang, Improvements to the long counter for neutron energies up to GeV. Radiat. Meas. 140, 106504 (2021). https://doi.org/10.1016/j.radmeas.2020.106504

    Article  Google Scholar 

  14. H. Harano, T. Matsumoto, J. Nishiyama, A. Masuda, A. Uritani, K. Kudo, Development of a compact flat response neutron detector. IEEE Trans. Nucl. Sci. 58(5), 2421–2425 (2011). https://doi.org/10.1109/TNS.2011.2163191

    Article  ADS  Google Scholar 

  15. K. Watanabe, J. Otsuka, M. Shigeyama, Y. Suzuki, A. Yamazaki, A. Unitani, Flat-response neutron detector using spatial distribution of thermal neutrons in a moderator. Nucl. Instrum. Methods Phys. Res. A 652(1), 392–396 (2011). https://doi.org/10.1016/j.nima.2010.08.044

    Article  ADS  Google Scholar 

  16. R.L. Bramblett, R.I. Ewing, T.W. Bonner, A new type of neutron spectrometer. Nucl. Instrum. Methods 9(1), 1–12 (1960). https://doi.org/10.1016/0029-554X(60)90043-4

    Article  ADS  Google Scholar 

  17. A.V. Alevra, D.J. Thomas, Neutron spectrometry in mixed fields: multisphere spectrometers. Radiat. Prot. Dosim. 107(1–3), 33–68 (2003). https://doi.org/10.1093/oxfordjournals.rpd.a006388

    Article  Google Scholar 

  18. J. M. Gómez-Ros, R. Bedogni, D.A.V.I.D.E. Bortot, B. Buonomo, A. Esposito, A. Gentile, M. Lorenzoli, M.V. Introini, G. Mazitelli, M. Moraleda, A. Pola, D. Sacco, CYSP: A new cylindrical directional neutron spectrometer. Conceptual design. Radiat. Meas. 82, 47–51 (2015). https://doi.org/10.1016/j.radmeas.2015.07.005

  19. R. Bedogni, J.M. Gómez-Ros, D. Bortot, A. Pola, M.V. Introini, A. Esposito, A. Gentile, G. Mazzitelli, B. Buonomo, Neutron spectrometry from thermal energies to GeV with single-moderator instruments. Eur. Phys. J. Plus 130, 1–4 (2015). https://doi.org/10.1140/epjp/i2015-15024-6

    Article  Google Scholar 

  20. N.T. Le, N.Q. Nguyen, H.Q. Nguyen, D.K. Pham, M.C. Nguyen, V.L. Bui, V.C. Cao, V.H. Duong, T.H. Duong, H.N. Tran, Cylindrical neutron spectrometer system: design and characterization. Eur. Phys. J. Plus 136(6), 690 (2021). https://doi.org/10.1140/epjp/s13360-021-01681-9

    Article  Google Scholar 

  21. R. Bedogni, A. Calamida, T. Napolitano, C. Cantone, A. M. Fontanilla, A. I. Castro Campoy, G. Abbatini, A. Pietropaolo, V. Monti, E. M. Mafucci, M. Bunce, D. Thomas, J.M. Gómez-Ros, S. Altieri, The NCT-WES directional neutron spectrometer: validation of the response with monoenergetic neutron fields. Eur. Phys. J. Plus, 138, 270 (2023). https://doi.org/10.1140/epjp/s13360-023-03840-6

  22. R. Bedogni, A. Calamida, A. Fontanilla, A. I. Castro Campoy, T. Napolitano, C. Cantone, E. Mafucci, V. Monti, S. Altieri, J.M. Gómez-Ros, M. Pillon, A. Pietropaolo, Measuring the near-target neutron field of a D–D fusion facility with the novel NCT-WES spectrometer. Eur. Phys. J. Plus 137, 773 (2022). https://doi.org/10.1140/epjp/s13360-022-02922-1

  23. Z.M. Hu, L.J. Ge, J.Q. Sun, Y.M. Zhang, T.F. Du, X.Y. Peng, J. Chen, H. Zhang, M. Nocente, M. Rebai, G. Croci, L.Q. Hu, G.Q. Zhong, R.J. Zhou, J.X. Chen, X.Q. Li, T.S. Fan, An active Bonner sphere spectrometer capable of intense neutron field measurement. Appl. Phys. Lett. 114(23), 233502 (2019). https://doi.org/10.1063/1.5096191

    Article  ADS  Google Scholar 

  24. J.G. Williams, D.M. Gilliam, Thermal neutron standards. Metrologia 48(6), S254 (2011). https://doi.org/10.1088/0026-1394/48/6/S03

    Article  ADS  Google Scholar 

  25. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F. Brown, R.J. Casperson, J. Conlin, D.E. Cullen, M.-A. Descalle, R. Firestone, T. Gaines, K.H. Guber, A.I. Hawari, J. Holmes, T.D. Johnson, T. Kawano, B.C. Kiedrowski, A.J. Koning, S. Kopecky, L. Leal, J.P. Lestone, C. Lubitz, J.I. Márquez Dámian, C.M. Mattoon, E.A. McCutchan, S. Mughabghab, P. Navratil, D. Neudecker, G.P.A. Nobre, G. Noguere, M. Paris, M.T. Pigni, A.J. Plompen, B.Pritychenko, V.G. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E.S. Soukhovitskii, I. Stetcu, P. Talou, I. Thompson, S. van der Marck, L. Welser-Sherrill, D. Wiarda, M. White, J.L. Wormald, R.Q. Wright, M. Zerkle, G. Žerovnik, Y. Zhu, ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142 (2018). https://doi.org/10.1016/j.nds.2018.02.001

  26. Z.M. Hu, Y.H. Zheng, T.S. Fan, Z.Q. Cui, J. Chen, H. Zhang, G. Gorini, Q. Zhao, Experimental evaluation of the Geant4-calculated response functions of a Bonner sphere spectrometer on monoenergetic neutron sources. Nucl. Instrum. Methods Phys. Res. A 965, 163836 (2020). https://doi.org/10.1016/j.nima.2020.163836

    Article  Google Scholar 

  27. A. Fontanilla, A. Calamida, A. I. Castro Campoy, C. Cantone, A. Pietropaolo, J.M. Gómez-Ros, V. E. MontiMafucci, S. Vernetto, A. Pola, D. Bortot, R. Bedogni, Extended range Bonner sphere spectrometer for high-elevation neutron measurements. Eur. Phys. J. Plus 137, 1315 (2022). https://doi.org/10.1140/epjp/s13360-022-03439-3

  28. L. Zhang, Y. Wang, H. Guo, C. Yu, H. Hu, Y. Liu, S. Chen, Transient current analysis of silicon carbide neutron detector using SRIM and TCAD. IEEE Sens. J. 22(11), 10620–10629 (2022). https://doi.org/10.1109/JSEN.2022.3170570

    Article  ADS  Google Scholar 

  29. T.M. Oakes, S.L. Bellinger, W.H. Miller, E.R. Myers, R.G. Fronk, B.W. Cooper, T.J. Sobering, P.R. Scott, P. Ugorowski, D.S. McGregor, J.K. Shultis, A.N. Caruso, An accurate and portable solid state neutron rem meter. Nucl. Instrum. Methods Phys. Res. A 719, 6–12 (2013). https://doi.org/10.1016/j.nima.2013.03.060

    Article  ADS  Google Scholar 

  30. H. Tagziria, D.J. Thomas, Calibration and Monte Carlo modelling of neutron long counters. Nucl. Instrum. Methods Phys. Res. A 452(3), 470–483 (2000). https://doi.org/10.1016/S0168-9002(00)00448-4

    Article  ADS  Google Scholar 

  31. Z.M. Hu, X.Y. Peng, Z.J. Chen, T.F. Du, L.J. Ge, X. Yuan, Z.Q. Cui, W.J. Zhu, Z.M. Wang, X. Zhu, J.X. Chen, X.Q. Li, G.H. Zhang, J. Chen, H. Zhang, G. Gorini, T.S. Fan, Experimental characterization of a long counter for neutron fluence measurement. Radiat. Meas. 119, 16–21 (2018). https://doi.org/10.1016/j.radmeas.2018.08.017

    Article  Google Scholar 

  32. M. Reginatto, Resolving power of a multisphere neutron spectrometer. Nucl. Instrum. Methods Phys. Res. A 480(2–3), 690–695 (2002). https://doi.org/10.1016/S0168-9002(01)01207-4

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was finically supported by the National Natural Science Foundation of China (No. 12105144), China Postdoctoral Science Foundation (No. 2022M721659), the Primary Research and Development Plan of Jiangsu Province (Grant No. BE2022846), the Fundamental Research Funds for the Central Universities (Grant No. NC2022006), and the Foundation of Graduate Innovation Center in NUAA (Grant No. xcxjh20220607).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhimeng Hu or Xiaobin Tang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Hu, Z., Ma, X. et al. Design of a compact long counter with an improved response using multiple point-like thermal neutron counters. Eur. Phys. J. Plus 138, 419 (2023). https://doi.org/10.1140/epjp/s13360-023-04071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04071-5

Navigation