Skip to main content

Advertisement

Log in

In silico analysis of microdomain-mediated trimer formation in the T cell membrane

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We consider stochastic reaction-diffusion dynamics involved in the formation of a trimeric protein receptor complex, where diffusion is modulated by the presence of small, fixed membrane microdomains. Compartmentalisation of cell membrane signalling proteins may optimise signal transduction but previous modelling work suggests that signalling is only augmented if microdomains are highly mobile. Using a Gillespie algorithm-based spatial numerical simulation, we examine the effect of the presence, size and total coverage of microdomains, which either slow protein diffusion or trap proteins at their boundary. We examine scenarios where protein-protein interactions take place within microdomains, and also where interactions are favoured at the microdomain boundary. This model is motivated by the formation of the high-affinity receptor for the cytokine IL-2. Proliferation requires a threshold number of bound receptors, but pleiotropic effects of IL-2 on other cell types means that high ligand concentrations are undesirable. Hence, optimising T cell sensitivity to IL-2 is essential. In agreement with earlier models, we find that small microdomain sizes result in the greatest augmentation in receptor formation, but that static microdomains can also confer an increased sensitivity in the case of heterotrimeric receptor complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Simons, E. Ikonen, Nature 387, 569 (1997)

    Article  ADS  Google Scholar 

  2. R. Xavier, T. Brennan, Q. Li, C. McCormack, B. Seed, Immunity 8, 6 (1998)

    Article  Google Scholar 

  3. A. Grakoui, S. Bromley, C. Sumen, M. Davis, A. Shaw, P. Allen, M. Dustin, Science 285, 221 (1999)

    Article  Google Scholar 

  4. T. Zech, C.S. Ejsing, K. Gaus, B. de Wet, A. Shevchenko, K. Simons, T. Harder, EMBO J. 28, 5 (2009)

    Article  Google Scholar 

  5. M.A. Burchill, J. Yang, K.B. Vang, M.A. Farrar, Immunol. Lett. 114, 1 (2007)

    Google Scholar 

  6. S. Singer, G. Nicolson, Science 175, 720 (1972)

    Article  ADS  Google Scholar 

  7. F.M. Goñi, A. Alonso, L.A. Bagatolli, R.E. Brown, D. Marsh, M. Prieto, J.L. Thewalt, Biochim. Biophys. Acta 1781, 665 (2008)

    Google Scholar 

  8. B.C. Lagerholm, G.E. Weinreb, K. Jacobson, N.L. Thompson, Annu. Rev. Phys. Chem. 56, 309 (2005)

    Article  ADS  Google Scholar 

  9. M.S. Turner, P. Sens, N.D. Socci, Phys. Rev. Lett. 95, 16 (2005)

    Article  Google Scholar 

  10. M. Venturoli, M.M. Sperotto, M. Kranenburg, B. Smit, Phys. Rep. 437, 1 (2006)

    Article  ADS  Google Scholar 

  11. S.A. Pandit, Biophys. J. 87, 5 (2004)

    Google Scholar 

  12. H.J. Risselada, S.J. Marrink, Proc. Natl. Acad. Sci. USA 105, 45 (2008)

    Article  Google Scholar 

  13. G. Nudelman, M. Weigert, Y. Louzoun, Mol. Immunol. 46, 15 (2009)

    Article  Google Scholar 

  14. D.V. Nicolau, K. Burrage, R.G. Parton, J.F. Hancock, Mol. Cell. Biol. 26, 1 (2006)

    Article  Google Scholar 

  15. A. Bodnár, E. Nizsalóczki, G. Mocsár, N. Szalóki, Immunol. Lett. 116, 117 (2008)

    Article  Google Scholar 

  16. T. Taniguchi, Science 268, 251 (1995)

    Article  ADS  Google Scholar 

  17. J. Matkó, A. Bodnár, G. Vereb, L. Bene, G. Vámosi, Eur. J. Biochem. 269, 1199 (2002)

    Article  Google Scholar 

  18. G. Vereb, J. Matkó, G. Vámosi, S.M. Ibrahim, E. Magyar, S. Varga, J. Szöllosi, A. Jenei, R. Gáspár, T.A. Waldmann, S. Damjanovich, Proc. Natl. Acad. Sci. USA 97, 11 (2000)

    Article  Google Scholar 

  19. J. Goebel, K. Forrest, L. Morford, T.L. Roszman, J. Leukoc. Biol. 72, 1 (2002)

    Google Scholar 

  20. M. Marmor, M. Julius, Blood (2001)

  21. A. Ma, R. Koka, P. Burkett, Annu. Rev. Immunol. 16, 33 (2010)

    Google Scholar 

  22. H.P. Kim, J. Imbert, W.J. Leonard, Cytokine Growth Factor Rev. 17, 349 (2006)

    Article  Google Scholar 

  23. T.A. Waldmann, J. Clin. Immunol. 22, 2 (2002)

    Article  Google Scholar 

  24. E.M. Fallon, D.A. Lauffenburger, Biotechnol. Prog. 16, 5 (2000)

    Article  Google Scholar 

  25. J.M. Ellery, P.J. Nicholls, Immunol. Cell. Biol. 80, 4 (2002)

    Article  Google Scholar 

  26. M. Gibson, J. Bruck, J. Phys. Chem. A 104, 1876 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, E., Henderson, B. & Zaikin, A. In silico analysis of microdomain-mediated trimer formation in the T cell membrane. Eur. Phys. J. Spec. Top. 187, 21–30 (2010). https://doi.org/10.1140/epjst/e2010-01267-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01267-2

Keywords

Navigation