Skip to main content
Log in

Stationary shapes of deformable particles moving at low Reynolds numbers

  • Regular Article
  • Artificial Microswimmers
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We introduce an iterative solution scheme in order to calculate stationary shapes of deformable elastic capsules which are steadily moving through a viscous fluid at low Reynolds numbers. The iterative solution scheme couples hydrodynamic boundary integral methods and elastic shape equations to find the stationary axisymmetric shape and the velocity of an elastic capsule moving in a viscous fluid governed by the Stokes equation. We use this approach to systematically study dynamical shape transitions of capsules with Hookean stretching and bending energies and spherical resting shape sedimenting under the influence of gravity or centrifugal forces. We find three types of possible axisymmetric stationary shapes for sedimenting capsules with fixed volume: a pseudospherical state, a pear-shaped state, and buckled shapes. Capsule shapes are controlled by two dimensionless parameters, the Föppl-von-Kármán number characterizing the elastic properties and a Bond number characterizing the driving force. For increasing gravitational force the spherical shape transforms into a pear shape. For very large bending rigidity (very small Föppl-von-Kármán number) this transition is discontinuous with shape hysteresis. The corresponding transition line terminates, however, in a critical point, such that the discontinuous transition is not present at typical Föppl-von-Kármán numbers of synthetic capsules. In an additional bifurcation, buckled shapes occur upon increasing the gravitational force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Barthès-Biesel, Curr. Opin. Colloid Interface Sci. 16, 3 (2011)

    Article  Google Scholar 

  2. D.A. Fedosov, H. Noguchi, G. Gompper, Biomech. Model. Mechanobiol. 13, 239 (2014)

    Article  Google Scholar 

  3. H. Stone, Annu. Rev. Fluid Mech. 46, 67 (2014)

    Article  Google Scholar 

  4. D. Abreu, M. Levant, V. Steinberg, U. Seifert, Adv. Colloid Interface Sci. 208, 129 (2014)

    Article  Google Scholar 

  5. Z. Huang, M. Abkarian, A. Viallat, New J. Phys. 13, 035026 (2011)

    Article  ADS  Google Scholar 

  6. R. Clift, J. Grace, M. Weber, Bubbles, Drops, and Particles (Academic Press, New York, 1978)

  7. H.A. Stone, Annu. Rev. Fluid Mech. 26, 65 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Coupier, A. Farutin, C. Minetti, T. Podgorski, C. Misbhah, Phys. Rev. Lett. 108, 178106 (2012)

    Article  ADS  Google Scholar 

  9. Y. Lefebvre, E. Leclerc, D. Barthès-Biesel, J. Walter, F. Edwards-Lévy, Phys. Fluids 20, 123102 (2008)

    Article  ADS  Google Scholar 

  10. A. Mietke, O. Otto, S. Girardo, P. Rosendahl, A. Taubenberger, S. Golfier, E. Ulbricht, S. Aland, J. Guck, E. Fischer-Friedrich, Biophys. J. 109, 2023 (2015)

    Article  ADS  Google Scholar 

  11. V.F. Geyer, F. Jülicher, J. Howard, B.M. Friedrich, Proc. Natl. Acad. Sci. U.S.A. 110, 18058 (2013)

    Article  ADS  Google Scholar 

  12. H.-H. Boltz, J. Kierfeld, Phys. Rev. E 92, 033003 (2015)

    Article  ADS  Google Scholar 

  13. H.-H. Boltz, J. Kierfeld, Phys. Rev. E 92, 069904 (2015)

    Article  ADS  Google Scholar 

  14. U. Seifert, Adv. Phys. 46, 13 (1997)

    Article  ADS  Google Scholar 

  15. G. Boedec, M. Leonetti, M. Jaeger, J. Comput. Phys. 230, 1020 (2011)

    Article  ADS  Google Scholar 

  16. G. Boedec, M. Jaeger, M. Leonetti, Phys. Rev. E 88, 010702 (2013)

    Article  ADS  Google Scholar 

  17. I. Rey Suàrez, C. Leidy, G. Tèllez, G. Gay, A. Gonzalez-Mancera, PLoS ONE 8, e68309 (2013)

    Article  ADS  Google Scholar 

  18. W.D. Corry, H.J. Meiselman, Biophys. J. 21, 19 (1978)

    Article  Google Scholar 

  19. J.F. Hoffman, S. Inoué, Proc. Natl. Acad. Sci. USA 103, 2971 (2006)

    Article  ADS  Google Scholar 

  20. M. Peltomäki, G. Gompper, Soft Matter 9, 8346 (2013)

    Article  ADS  Google Scholar 

  21. G.K. Batchelor, An introduction to fluid dynamics (Cambridge University Press, Cambridge, 2000)

  22. A. Libai, J. Simmonds, The Nonlinear Theory of Elastic Shells (Cambridge University Press, Cambridge 1998)

  23. C. Pozrikidis, Modeling and Simulation of Capsules and Biological Cells (CRC Press, Boca Raton, 2003)

  24. S. Knoche, D. Vella, E. Aumaitre, P. Degen, H. Rehage, P. Cicuta, J. Kierfeld, Langmuir 29, 12463 (2013)

    Article  Google Scholar 

  25. S. Knoche, J. Kierfeld, Phys. Rev. E 84, 046608 (2011)

    Article  ADS  Google Scholar 

  26. L. Landau, E. Lifshitz, Theory of Elasticity (Pergamon, New York, 1986)

  27. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Martinus Nijhoff Publishers, The Hague, 1983)

  28. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992)

  29. H.P. Langtangen, K.-A. Mardal, R. Winther, Adv. Water Resour. 25, 1125 (2002)

    Article  ADS  Google Scholar 

  30. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    Article  ADS  Google Scholar 

  31. P. Degen, Curr. Opin. Colloid Interface Sci. 19, 611 (2014)

    Article  Google Scholar 

  32. M. Lighthill, Comm. Pure Appl. Math. 5, 109 (1952)

    Article  MathSciNet  Google Scholar 

  33. J. Blake, J. Fluid Mech. 46, 199 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kierfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltz, HH., Kierfeld, J. Stationary shapes of deformable particles moving at low Reynolds numbers. Eur. Phys. J. Spec. Top. 225, 2269–2285 (2016). https://doi.org/10.1140/epjst/e2016-60059-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60059-7

Navigation