Skip to main content
Log in

Stabilization of microwave arc plasmas of hydrocarbons at atmospheric pressure

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Pure hydrocarbon plasmas have been generated at low pressures with good efficiency using methane as a reactant. Hydrocarbon plasma discharges containing high energy, free radical, and ionized intermediates were analyzed in situ using emission spectroscopy. Emission spectra were correlated with analytical data obtained from resultant product mixtures and literature assignments of emission bands in order to identify these intermediates. Stabilization of atmospheric methane plasmas using argon as a diluent has also been demonstrated in this study. Emission spectroscopy has also been used to identify reaction intermediates formed in plasmas at high pressures. Distinct differences in plasma discharges have been observed as a function of pressure, power, and methane concentrations at the molecular level using in situ spectroscopic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hosomi, T. Maki, T. Kobayashi, Y. Yoshizako, M. Taniguchi, and M. Sugiyo, Japan J. Appl. Phys. 84, 6059 (1998).

    CAS  Google Scholar 

  2. J.L. Jauberteau, L. Thomas, J. Aubreton, I. Jauberteau, and A. Catherinot, Plas. Chem. Plas. Proc. 81, 137 (1998).

    Article  Google Scholar 

  3. E.A.H. Timmermans, J. Jonkers, I.A.J. Thomas, A. Rodero, M.C. Quintero, A. Sola, A. Gamero, and J.A.M. Van Der Mullen, Spectrochim. Acta, Part B 53B, 1553 (1998).

    Article  CAS  Google Scholar 

  4. M. Okumoto, B.S. Rajanikanth, S. Katsura, and A. Mizuno, IEEE Trans. Ind. Appl. 34, 940 (1998).

    Article  CAS  Google Scholar 

  5. M. Furubayashi, K. Yasuda, N. Yoshida, and H. Daiky, Japanese Patent JP 96-96353 960418 (1996)

  6. H.V Boenig, Fundamentals of Plasma Chemistry and Technology; Technomic: Lancaster, 1988.

    Google Scholar 

  7. S.L. Suib and Z. Zhang, U.S. Patent 5,015,349, May 14 (1991).

  8. S. L. Suib and Z. Zhang, U.S. Patent 5,131,993, July 21 (1992).

  9. R.P. Zerger, S.L. Suib, and Z. Zhang, Symposium on Natural Gas Upgrading II, Preprint ACS, Div. Pet. Chem.; San Francisco, April 5–10, 1992, pp. 344–348.

  10. J. Huang and S.L. Suib, J. Phys. Chem. 97, 9403 (1993).

    Article  CAS  Google Scholar 

  11. W.J. Murphy, U. S. Patent 560,522 (1992).

    Google Scholar 

  12. J.H. Huang and S.L. Suib, Res. Chem. Intermed. 20, 133 (1994).

    Article  CAS  Google Scholar 

  13. J. Tanaka, J. Chem. Soc., Chem. Comm., 921 (1982).

  14. W. Murphy, Int. Patent WO 92/02448.

  15. T. Fujii and H.S. Kim, Chem. Phys. Lett., 268, 229 (1997).

    Article  CAS  Google Scholar 

  16. J.H. Huang, M.V. Badani, S.L. Subi, J.B. Harrison, and M. Kablauoi, J. Phys. Chem., 98, 206 (1994).

    Article  CAS  Google Scholar 

  17. M.V. Badani, J. Huang, S.L. Suib, J.B. Harrison, and M. Kablauoi, Res. Chem. Intermed., 21, 621 (1995).

    CAS  Google Scholar 

  18. A.V. Gurevich, N.D. Borisov, N.A. Lukina, K.F. Sergeichev, I.A. Sychov, S.I. Kozlov, and N.V. Smirnova, Phys. Lett. A. 201, 234 (1995).

    Article  CAS  Google Scholar 

  19. M Venugopalan and S. Veprek, Top. Curr. Chem. 107, 1 (1983).

    CAS  Google Scholar 

  20. J. Bougdira and H. Chatei, C. Simon, M. Remy, and P. Alnot, In: Sci. Tech. Appl., 10th International Colloquium on Plasma Processes, vol. 275, 1995, pp. 305–308.

    Google Scholar 

  21. Y. Shigesato, R.E. Boekenhauer, and B.W. Sheldon, Appl. Phys. Lett., 63, 314 (1993).

    Article  CAS  Google Scholar 

  22. A. Campargue, M. Chenevier, F. Stoeckel, B. Marcus, M. Mermoux, F. Vinet, and S. Ljungstroem, In: NATO ASI, Ser. B; vol. 266, 1991, pp. 653–660.

    CAS  Google Scholar 

  23. H. Shoji, A. Saima, T. Sasao, S. Ikeda, J. Arai, and M. Iwasaki, J. Soc. Mech. Eng. Rev., 13, 14 (1992).

    CAS  Google Scholar 

  24. V. Linna and J. Rantanen, In: Gas Analysis in Combustion, R. Hernberg, (Ed.), Tanpere, Finland, Oct. 4–5, 1994.

  25. N. Iida, K. Kidoguchi, and S. Kubo, Trans. Of the Jap. Soc. of Mech. Eng., Part B, vol. 59, 1993, pp. 4001–4007.

    CAS  Google Scholar 

  26. F.C. Fehsenfeld, K.M. Evenson, and H.P. Broida, Rev. Sci. Instrum., 36, 294 (1965).

    Article  Google Scholar 

  27. C. Tixier, P. Tristant, J. Desmaison, and D. Merle, J. Phys. IV, Colloq, 5, 593 (1995).

    Google Scholar 

  28. R.W. Pearse and A.G. Gaydon, In: Identification of Molecular Spectra; Wiley & Sons: New York, 1950.

    Google Scholar 

  29. S. Svanberg, In: Atomic and Molecular Spectroscopy: Basic Aspects and Pratical Applications; Springer-Verlag: New York, 1991.

    Google Scholar 

  30. R.C. Weast, (Ed.) In: Handbook of Chemistry and Physics, 52nd Ed., CRC Press: Cleveland, OH, 1971, p. F–183.

    Google Scholar 

  31. V.G. Mossotti, Tech. of Metals Res., 3, 533 (1970).

    CAS  Google Scholar 

  32. W.A. Weimer and C.E. Johnson, Proc. of Int. Soc. for Optical Eng., vol. 1325, 1990, pp. 56–62.

    CAS  Google Scholar 

  33. J. Roepcke, and A. Ohl, Plasma Phys., 34, 575 (1994).

    Article  CAS  Google Scholar 

  34. D.R. Lide, (Ed.) In: Handbook of Chemistry and Physics, 74th Ed., CRC Press: Boca Raton, FL, 1994, p. 10-214-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, M.W., Rozak, J.R., Suib, S.L. et al. Stabilization of microwave arc plasmas of hydrocarbons at atmospheric pressure. Res Chem Intermed 26, 529–548 (2000). https://doi.org/10.1163/156856700X00516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856700X00516

Keywords

Navigation