Skip to main content

Advertisement

Log in

Design Archetypes for Phase 2 Clinical Trials in Central Nervous System Disorders

  • Biostatistics
  • Published:
Drug information journal : DIJ / Drug Information Association Aims and scope Submit manuscript

Abstract

An overarching framework is proposed to guide the design of phase 2 studies in central nervous system disorders. Archetypes are considered for scenarios where dose response is highly relevant in clinical practice, as in the symptomatic treatment of acute disorders. Archetypes for scenarios where dose response is less relevant, as in disease modification for neurodegenerative disorders, are beyond the scope of this article. Primary design archetypes are determined by axes of development that are defined by optimism for success (probability of efficacy) and signal detection (magnitude of the anticipated effect size). The fast-to-registration primary archetype uses a dose-response study as the first efficacy, that is, proof of concept (PoC), study and is appropriate when the prospects for signal detection and the optimism for efficacy are higher. These conditions may exist when the anticipated effect size is large and when either testing a drug with a proven mechanism of action or when a favorable biomarker result was obtained in phase 1. The fast-to-PoC primary archetype tests one dose arm to establish PoC before assessing dose response and is appropriate when the optimism for efficacy and the prospects for signal detection are lower. These conditions may exist when testing a drug with a novel mechanism and/or the anticipated effect size is smaller. Secondary archetypes are used to mitigate the trade-offs between the quick-kill fast-to-PoC approach and the quick-win fast-to-registration approach, and are key areas where adaptive designs can be beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thall PF. A review of phase 2–3 clinical trial designs. UT MD Anderson Cancer Center Department of Biostatistics Working Paper Series. 2007; Working Paper 35.

  2. El-Maraghi RH, Eisenhauer EA. Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J Clin Oncol 2008;26:1346– 1354.

    Article  PubMed  Google Scholar 

  3. Trivedi MH, Rush H. Does a placebo run-in or a placebo treatment cell affect the efficacy of anti-depressant meditations? Neuropsychopharmacol-ogy. 1994;11(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  4. Faries DE, Heiligenstein JH. Tollefson GD, Potter WZ. The double-blind variable platebo lead-in period: results from two antidepressant clinical trials. J Clin Psychopharmacol. 2001;21:561– 568.

    Article  CAS  PubMed  Google Scholar 

  5. Lee S, Walker JR, Jakul L, Sexton K. Does elimination of placebo responders in a platebo run-in increase the treatment effect in randomized clin-ical trials? A meta-analytic evaluation. Depress Anxiety.2004;19(1):10–19.

    Article  PubMed  Google Scholar 

  6. Mallinckrodt CH, Meyers AL, Prakash A, Faries DE, Detke MJ. Simple options for improving signal detection in antidepressant clinical trials. Psychopharmacol Bull. 2007;40(2): 101–114.

    PubMed  Google Scholar 

  7. Fava M, Evins AE, Dorer DJ, Schoenfeld DA. The problem of the placebo response in clinical trials for psychiatric disorders: culprits, possible remedies, and a novel study design approach. Psycho-ther Psychosom.2003;72(3):115–127.

    Article  PubMed  Google Scholar 

  8. Khan A, Detke M, Khan SR, Mallinckrodt C. Placebo response and antidepressant clinical trial outcome. J Nerv Ment Dis. 2003;191 (4):211 –218.

    PubMed  Google Scholar 

  9. Papakostas Gl, Fava M. Does the probability of receiving placebo influence clinical trial out-tome? A meta-regression of double-blind, randomized clinical trials in MDD. Eur Neuropsycho-Pharmacol. 2009;19(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  10. Walsh BT, Seidman SN, Sysko R, Gould M. Placebo response in studies of major depression; variable, substantial, and growing. JAMA. 2002;287: 1840–1847.

    Article  PubMed  Google Scholar 

  11. Stein DJ, Baldwin DS, Dolberg OT, Despiegel N, Bandelow B. Which factors predict placebo response in anxiety disorders and major depression? An analysis of placebo-controlled studies of escitalopram. J Clin Psychiatry. 2006;67:1741– 1746.

    Article  CAS  PubMed  Google Scholar 

  12. Bech P, Kajdasz DK, Porsdal V. Dose-response relationship of duloxetine in placebo-controlled clinical trials in patients with major depressive disorder. Psychopharmacology (Berl). 2006;188(3): 273–280,

    Article  CAS  Google Scholar 

  13. Enisuah R. Shaffer M, Zhang J. A critical examination of the sensitivity of unidimensional sub-scales derived from the Hamilton Depression Rating Scale to antidepressant drug effects. J Psy-chiatr Res. 2002;36:437–448.

    Article  PubMed  Google Scholar 

  14. Faries D, Herrera J, Rayamajhi J, DeBrota D, Demitrack M, Potter WZ. The responsiveness of the Hamilton Depression Rating Scale. J Psychiatr Res. 2000;34(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  15. Khan A, Brodhead AE, Kolts RL Relative sensitivity of the Montgomery-Asberg depression rating scale, the Hamilton depression rating scale and the Clinical Global Impressions rating scale in antidepressant clinical trials: a replication analysis. Int Clin Psychopharmacol. 2004;19(3):157–160.

    Article  PubMed  Google Scholar 

  16. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–389.

    Article  CAS  PubMed  Google Scholar 

  17. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khan A, Khan SR, Shankles EB, Potissar NL. Relative sensitivity of the Montgomery-Asberg Depression Rating Scale, the Hamilton Depression Rating Scale and the Clinical Global Impressions Rating Scale in antidepressant clinical trials, Int Clin Psychopharmacol. 2002;17(6);281 –285.

    Article  CAS  PubMed  Google Scholar 

  19. Khan A, Leventhal RM, Khan SR, Brown WA. Severity of depression and response to antidepres-sants and placebo: an analysis of the Food and Drug Administration database. J Clin Psychophar-macol. 2002;22(1):40–45.

    Article  Google Scholar 

  20. Khan A, Khan SR, Walens G, Kolts R, Giller EL. Frequency of positive studies among fixed and flexible dose antidepressant clinical trials: an analysis of the Food and Drug Administration summary basis of approval reports. Neuropsycho-pharmacology. 2003;28(3):552–557

    Article  CAS  PubMed  Google Scholar 

  21. Khan A, Kolts RL, Thase MF, Krishnan KR, Brown W. Research design features and patient characteristics associated with the outcome of antidepressant clinical trials. Am J Psychiatry. 2004; 161(1):2045–2049.

    Article  PubMed  Google Scholar 

  22. Khan A, Schwartz K, Kolts RL, Ridgway D, Line-berry C. Relationship between depression severity entry criteria and antidepressant clinical trial outcomes. Biol Psychiatry. 2007;62(1 ):65–71.

    Article  CAS  PubMed  Google Scholar 

  23. Landin R, DeBrota DJ, DeVries TA, Potter WZ. Demitrack MA. The impact of restrictive entry criterion during the placebo lead-in period. Biometrics. 2000;56:271 –278.

    Article  CAS  PubMed  Google Scholar 

  24. Melander H, Salmonson T, Abadie E, van Zwi-eten-Boot B. A regulatory apologia: a review of placebo-controlled studies in regulatory submissions of new-generation antidepressants. Eur Neuropsychopharmacol 2008;18:623–627.

    Article  CAS  PubMed  Google Scholar 

  25. Fava M, Rosenbaum JF Research Designs and Methods in Psychiatry. Amsterdam, Netherlands: Elsevier; 1992.

    Google Scholar 

  26. Shekhar A, Poller WZ, Lightfoot J. et al. Selective muscarinic receptor agonist xanomeline is a novel treatment approach for schizophrenia. Am J Psychiatry. 2008;165:1033 –1039.

    Article  PubMed  Google Scholar 

  27. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW, An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist. CP-I01.606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmocol 2008;28:631–637.

    Article  CAS  Google Scholar 

  28. Hurko O, Ryan JL, Translational research in central nervous system drug discovery. NeuroRx. 2005;2:671–682.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kola I, Landis J, Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–715.

    Article  CAS  PubMed  Google Scholar 

  30. Kemp AS, Schooler NR, Kalali AH, et al. What is causing the reduced drug-placebo difference in recent schizophrenia clinical trials and what can be done about it? Schizophr Bull. Epub ahead of print, August 22. 2008. doi:10.1093/schbul/sbn 110.

  31. Gelenberg AJ, Thase ME, Meyer RE, et al. The history and current stale of antidepressant clinical trial design: a call to action for proof-of-concept studies. J Clin Psychiatry. 2008;69:1513– 1528.

    Article  PubMed  Google Scholar 

  32. International Conference on Harmonization. ICH guidelines: E4, Dose-response information to support drug registration: E8, General considerations for clinical trials, https://doi.org/www.ich.org/cache/compo/276-254-1.html.

  33. Keene ON. Phase 11 trials. In: D’Agostino R, Sullivan L, Massaro J. eds. Wiley Encyclopedia of Clinical Trials. Hoboken. NJ: Wiley: 2007. dx.doi.org/10.1002/9780471462422.eoct368.

    Google Scholar 

  34. Liu Y, Hsu J, Ruberg S. Partition testing in dose-response studies with multiple endpoints. Pharm Stat. 2007;6(3): 181–192.

    Article  PubMed  Google Scholar 

  35. Dmitrienko A, Fritsch K, Hsu J, Ruberg S. Design and analysis of dose-ranging clinical studies. In: Dmitrienko A, Chuang-Stein C, D’Agostino RB. eds. Pharmaceutical Statistics Using SAS:A Practical Guide. Cary. NC: SAS Press: 2007;273–310,

    Google Scholar 

  36. Stewart WH, Ruberg SJ. Delecting dose response with contrasts. Stat Med. 2000;19:913–921.

    Article  CAS  PubMed  Google Scholar 

  37. Hafner KB, Ruberg SJ. Factorial dose response studies using frequencies and magnitude of dose. J Biopharm Stat. 1996;6(3):253–262.

    Article  CAS  PubMed  Google Scholar 

  38. Ruberg SJ. Dose response studies. I. Some design considerations. J Biopharm Stat. 1995;5(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  39. Ruberg SJ. Dose response studies, 11. Analysis and interpretation. J Biopharm Stat. 1995;5(1): 15– 42.

    Article  CAS  PubMed  Google Scholar 

  40. Ruberg SJ. Contrasts for identifying the minimum effective dose. JASA. 1989;84:816–822.

    Article  Google Scholar 

  41. Preskorn SH. Recent dose-effect studies regarding antidepressants. In: Balant LP, Benitez J, Dahl SC, Gram LF, Pinder RM, Potter WZ. eds. European Cooperation in the Field of Scientific and Techni-cal Research. Belguim: European Commission: 1998;45–61.

    Google Scholar 

  42. Lipkovich I. Adams DM, Mallinckrodt CH, Faries DE, Baron D, Houston JP. Evaluating dose re-sponse from flexible dose clinical trials. BMC Psychiatry. 2008;8:3.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Donahue RM. Ruberg SJ. Standardizing clinical study designs for acceleraling drug development. Drug Inf J. 1997;31:655–663.

    Article  Google Scholar 

  44. Janicak PG, Davis JM, Preskorn SH, Ayd FJ. Principles and Practice of Psychopharmacotherapy. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2001.

    Google Scholar 

  45. Temple R, Ellenberg SS. Placebo-controlled trials and active-control trials in the evaluation of new treatments. Part 1: ethical and scientific issues. Ann Intern Med. 2000;133:455–463.

    Article  CAS  PubMed  Google Scholar 

  46. Pritchett YL, Marciniak MD, Corey-Lisle PK, Ber-zon RA, Desaiah D, Detke MJ. Use of effect size to determine optimal dose of duloxetine in major depressive disorder. J Psychiatr Res. 2007;41(3– 4):311–318.

    Article  PubMed  Google Scholar 

  47. Chow S-C. Chang M. Adaptive Design Methods in Clinical Trials, Boca Raton. FL Chapman and Hall/CRC;2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig H. Mallinckrodt PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallinckrodt, C.H., Detke, M.J., Prucka, W.R. et al. Design Archetypes for Phase 2 Clinical Trials in Central Nervous System Disorders. Ther Innov Regul Sci 44, 421–430 (2010). https://doi.org/10.1177/009286151004400406

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/009286151004400406

Key Words

Navigation