Skip to main content

Advertisement

Log in

Preparation and characterization of gelatin surface modified PLGA microspheres

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

This study optimized conditions for preparing and characterizing gelatin surface modified poly (lactic-co-glycolic acid) (PLGA) copolymer microspheres and determined this systems interaction with fibronectin. Some gelatin microspheres have an affinity for fibronectin-bearing surfaces; these miscrospheres exploit the interaction between gelatin and fibronectin. PLGA copolymer microspheres were selected because they have reproducible and slowrelease characteristics in vivo. The PLGA microspheres were surface modified with gelatin to impart fibronectin recognition. Dexamethasone was incorporated into these microspheres because dexamethasone is beneficial in chronic human diseases associated with extra fibronectin expression (eg, cardiovascular disease, inflammatory disorders, rheumatoid arthritis). The gelatin surface modified PLGA microspheres (prepared by adsorption, conjugation, and spray coating) were investigated and characterized by encapsulation efficiency, particle size, in vitro release, and affinity for fibronectin. The gelatincoated PLGA microspheres had higher interaction with fibronectin compared with the other gelatin surface modified PLGA microspheres (adsorption and conjugation). Dexamethasone was released slowly (over 21 days) from gelatin surface modified PLGA microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perrin DA, English JP. Polyglycolide and polylactide. In Domb AJ, Kost J, Wiseman DM, eds. Handbook of Biodegradable Polymers. Amsterdam: Harwood Academic Publishers, 1997:3–25.

    Google Scholar 

  2. Watts PJ, Davies MC, Melia CD. Microencapsulation using emulsification solvent evaporation: an overview of techniques and applications. Crit Rev Ther Drug Carrier Syst. 1990;7:235–259.

    CAS  PubMed  Google Scholar 

  3. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.

    Article  CAS  PubMed  Google Scholar 

  4. Leach KJ. Cancer, drug delivery to treat-local & systemic. In Mathiowitz E. ed Encyclopedia of Controlled Drug Delivery. Vol 1. New York: John Wiley & Sons, 1999:119–142.

    Google Scholar 

  5. Scholes PD, Coombes AGA, Davies MC, Illum I, Davis SS. Particle engineering of biodegradable colloids for site-specific drug delivery. In: Park K, ed. Controlled Drug Delivery. Challenges and Strategies. Washington, DC: American Chemical Society, 1997:73–106

    Google Scholar 

  6. Stolnik S, Dunn SE, Garnett MC, et al. Surface modification of poly(lactide-coglycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Phann Res. 1994;11:1800–1808.

    Article  CAS  Google Scholar 

  7. Groves MJ. Parenteral drug delivery systems. In Mathiowitz E, ed. Encyclopedia of Controlled Drug Delivery: Vol 1. New York: John Wiley & Sons, 1999;743–777

    Google Scholar 

  8. Lou Y, Olson WP, Tian XX, Klegeman ME, Groves MJ. Interaction between fibronectin-bearing surfaces and Bacillus Calmette-Guerm (BCG) or gelatin microparticles. J Pharm Phaumacol, 1995;47:177–181.

    Article  CAS  Google Scholar 

  9. Colvin RB. Fibronectin in wound healing. In: Mosher DF, ed. Fibronectin, San Diego: Academic Press, 1989:201–218.

    Google Scholar 

  10. Carsons S, Lavietes BB, Diamond HS. Role of fibronectin in rheumatic diseases. In: Mosher DF, ed. Fibronectin. San Diego: Academic Press. 1990:218–145

    Google Scholar 

  11. Hynes RO. Fibronectins. New York: Springer-Verlag; 1990:113–145.

    Google Scholar 

  12. Thompson PN, Cho E, Blumenstock FA, Shah DM, Saba TM. Rebound elevation of fibronectin after tissue injury and ischemia: role of fibronectin synthesis. Am J Physiol. 1992;263 (4 Pt 1);G437-G445.

    CAS  PubMed  Google Scholar 

  13. Tsung M, Burgess DJ, Preparation and characterization of heparin/gelatin microspheres. Submitted to J Pharm Pharmacol. 2001.

  14. Dev V, Eigler N, Fishbein MC, et al. Sustained local drug delivery to the arterial wall via biodegradable microspheres. Cathet Cardiovasc Diagn. 1997;41:324–332.

    Article  CAS  PubMed  Google Scholar 

  15. Labhasetwar V, Song C, Levy RJ. Nanoparticle drug delivery system for restenosis. Adv Drug Deliv Reviews. 1997;24:63–85.

    Article  CAS  Google Scholar 

  16. Humphreya WR, Ericksona LA, Simmonsa CA, et al. The effect of intramural delivery of polyneric nanoparticles loaded with the antiproliferative 2-aminochromone U-86983 on neointimal hyperplasia development in balloon-injured porcine coronary arteries. Adv Drug Deliv Rev. 1997;24:87–108.

    Article  Google Scholar 

  17. Bodmeier R, McGinity JW. Solvent selection in the preparation of poly(DL-lactide) microspheres prepared by the solvent evaporation method. Int J Pharm 1988;43:179–186.

    Article  CAS  Google Scholar 

  18. Cohen EM. Dexamethasone [9□-fluoro-11 □. 17□. 21-trihydroxy-16□-methyl pregna-1, 4-diene-3, 20-dione]. Anal Profiles Drug Subst. 1973;2:163–197.

    Article  CAS  Google Scholar 

  19. Tsung M, Burgess DJ. Preparation and stabilization of heparin/gelatin complex coacervate microcapsules. J Pharm Sci. 1997;86:603–607.

    Article  PubMed  Google Scholar 

  20. Lamiable D, Vistelle R, Millart H, et al. High-performance liquid chromatographic determination of dexamethasone in human plasma. J Chromatogr. 1986;378:486–491.

    Article  CAS  PubMed  Google Scholar 

  21. Calis S, Jeyanthi R, Tsai T, Mehta RC, DeLuca PP. Adsoption of salmon calcitoninto PLGA microspheres. Pharm Res. 1995;12:1072–1076.

    Article  CAS  PubMed  Google Scholar 

  22. Rouzes C, Gref R, Leonard M, Delgado AD, Dellacherie E. Surface modification of poly(lactic acid) nanospheres using hydrophobically modified dextrans as stabilizers in an o/w emulsion/evaporation technique. J Biomed Materials Res. 2000;50:557–565.

    Article  CAS  Google Scholar 

  23. Nam YS, Song SH, Choi JY, Park TA. Lysozyme microencapsulation within biodegradable PLGA microspheres: urea effect on protein release and stability. Biotechnol Bioengineering. 2000;70:270–277.

    Article  CAS  Google Scholar 

  24. Kim TA, Burgess DJ. Formulation and release characteristics of poly(lactic-co-glycolic acid) microspheres containing chemically modified protein. J Pharm Pharmacol. 2001;53:23–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane J. Burgess.

Additional information

Published: May 1, 2001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamie Tsung, M., Burgess, D.J. Preparation and characterization of gelatin surface modified PLGA microspheres. AAPS PharmSci 3, 11 (2001). https://doi.org/10.1208/ps030211

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps030211

Key Words

Navigation