Skip to main content
Log in

Inkjet Printing of Proteins: an Experimental Approach

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Peptides and proteins represent a promissory group of molecules used by the pharmaceutical industry for drug therapy with great potential for development. However, the administration of these molecules presents a series of difficulties, making necessary the exploration of new alternatives like the buccal route of administration to improve drug therapy compliance. Although drop-on demand printers have been explored for small molecule drugs with promising results, the development of delivery systems for peptides and proteins through inkjet printing has seen little development. Therefore, the aim of this study was to assess the feasibility of using a thermal inkjet printing system for dispensing lysozyme and ribonuclease-A as model proteins. To address the absorption limitations of a potential buccal use, a permeation enhancer (sodium deoxycholate) was also studied in formulations. We found that a conventional printer successfully printed both proteins, exhibiting very high printing efficiency. Furthermore, the protein structure was not affected and minor effects were observed in the enzymatic activity after the printing process. In conclusion, we provide evidence for the usage of an inexpensive, easy to use, reliable, and reproducible thermal inkjet printing system to dispense proteins solutions for potential buccal application. Our research significantly contributes to present an alternative for manufacturing biologics delivery systems, with emphasis in buccal applications. Next steps of developments will be aimed at the use of new materials for printing, controlled release, and protection strategies for proteins and peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kinch MS. An overview of FDA-approved biologics medicines. Drug Discov Today. 2015;20(4):393–8.

    Article  CAS  PubMed  Google Scholar 

  2. Mack GS. Pfizer dumps Exubera. Nat Biotechnol. 2007;25(12):1331–2.

    Article  CAS  PubMed  Google Scholar 

  3. Muñoz-Torres M, Alonso G, Raya MP. Calcitonin therapy in osteoporosis. Treat Endocrinol. 2004;3(2):117–32.

    Article  PubMed  Google Scholar 

  4. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77(2):187–99.

    Article  CAS  PubMed  Google Scholar 

  5. Montenegro-Nicolini M, Morales JO. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS PharmSciTech [Internet]. 2016 Apr 15 [cited 2016 Apr 19]; Available from: http://link.springer.com. doi:10.1208/s12249-016-0525-z.

  6. Silva BMA, Borges AF, Silva C, Coelho JFJ, Simões S. Mucoadhesive oral films: the potential for unmet needs. Int J Pharm. 2015;494(1):537–51.

    Article  CAS  PubMed  Google Scholar 

  7. MonoSol Rx. MonoSol Rx and the PharmFilm pipeline [Internet]. 2015 [cited 2015 Nov 16]. Available from: http://www.monosolrx.com/content/pipeline/overview.htm.

  8. Bala R, Pawar P, Khanna S, Arora S. Orally dissolving strips: a new approach to oral drug delivery system. Int J Pharm Investig. 2013;3(2):67–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lindén M. Hot-melt extrusion of modified release pellets-influence of the formulation and extrusion process on extended-and enteric release profile. 2012 [cited 2015 Nov 1]; Available from: http://publications.lib.chalmers.se/records/fulltext/158879.pdf.

  10. Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm [Internet]. 2012 [cited 2015 Oct 21];2012. Available from: http://downloads.hindawi.com/journals/isrn.pharmaceutics/2012/436763.pdf.

  11. Janßen EM, Schliephacke R, Breitenbach A, Breitkreutz J. Drug-printing by flexographic printing technology—a new manufacturing process for orodispersible films. Int J Pharm. 2013;441(1–2):818–25.

    Article  PubMed  Google Scholar 

  12. Cespi M, Bonacucina G, Mencarelli G, Casettari L, Palmieri GF. Dynamic mechanical thermal analysis of hypromellose 2910 free films. Eur J Pharm Biopharm. 2011;79(2):458–63.

    Article  CAS  PubMed  Google Scholar 

  13. Buanz ABM, Belaunde CC, Soutari N, Tuleu C, Gul MO, Gaisford S. Ink-jet printing versus solvent casting to prepare oral films: effect on mechanical properties and physical stability. Int J Pharm. 2015;494(2):611–8.

    Article  CAS  PubMed  Google Scholar 

  14. Genina N, Fors D, Vakili H, Ihalainen P, Pohjala L, Ehlers H, et al. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci. 2012;47(3):615–23.

    Article  CAS  PubMed  Google Scholar 

  15. Mueannoom W, Srisongphan A, Taylor KMG, Hauschild S, Gaisford S. Thermal ink-jet spray freeze-drying for preparation of excipient-free salbutamol sulphate for inhalation. Eur J Pharm Biopharm. 2012;80(1):149–55.

    Article  CAS  PubMed  Google Scholar 

  16. Castro PM, Fonte P, Sousa F, Madureira AR, Sarmento B, Pintado ME. Oral films as breakthrough tools for oral delivery of proteins/peptides. J Control Release. 2015;211:63–73.

    Article  CAS  PubMed  Google Scholar 

  17. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22(6):673–85.

    Article  CAS  PubMed  Google Scholar 

  18. Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008;4(4):703.

    Article  CAS  Google Scholar 

  19. Delaney JT, Smith PJ, Schubert US. Inkjet printing of proteins. Soft Matter. 2009;5(24):4866.

    Article  CAS  Google Scholar 

  20. Meléndez PA, Kane KM, Ashvar CS, Albrecht M, Smith PA. Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci. 2008;97(7):2619–36.

    Article  PubMed  Google Scholar 

  21. Essel JT, Ihnen AC, Carter JD. Production of naproxen nanoparticle colloidal suspensions for inkjet printing applications. Ind Eng Chem Res. 2014;53(7):2726–31.

    Article  CAS  Google Scholar 

  22. Genina N, Fors D, Palo M, Peltonen J, Sandler N. Behavior of printable formulations of loperamide and caffeine on different substrates—effect of print density in inkjet printing. Int J Pharm. 2013;453(2):488–97.

    Article  CAS  PubMed  Google Scholar 

  23. Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M, Khinast JG, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  24. Buanz ABM, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28(10):2386–92.

    Article  CAS  PubMed  Google Scholar 

  25. Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85(3):1075–83.

    Article  CAS  PubMed  Google Scholar 

  26. Lonini L, Accoto D, Petroni S, Guglielmelli E. Dispensing an enzyme-conjugated solution into an ELISA plate by adapting ink-jet printers. J Biochem Biophys Methods. 2008;70(6):1180–4.

    Article  CAS  PubMed  Google Scholar 

  27. Le HP. Progress and trends in ink-jet printing technology [Internet]. 1998 [cited 2015 Mar 28]. Available from: http://ist.publisher.ingentaconnect.com/content/ist/jist/1998/00000042/00000001/art00007.

  28. Yun YH, Lee BK, Choi JS, Kim S, Yoo B, Kim YS, et al. A glucose sensor fabricated by piezoelectric inkjet printing of conducting polymers and bienzymes. Anal Sci Int J Jpn Soc Anal Chem. 2011;27(4):375.

    Article  CAS  Google Scholar 

  29. Cao A, Wang G, Tang Y, Lai L. Linear correlation between thermal stability and folding kinetics of lysozyme. Biochem Biophys Res Commun. 2002;291(4):795–7.

    Article  CAS  PubMed  Google Scholar 

  30. Stelea SD, Pancoska P, Benight AS, Keiderling TA. Thermal unfolding of ribonuclease A in phosphate at neutral pH: deviations from the two-state model. Protein Sci Publ Protein Soc. 2001;10(5):970–8.

    Article  CAS  Google Scholar 

  31. Merck KGaA. Product information: Glycerol 85%. Darmstadt, Germany.

  32. Gandhi R, Robinson J. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm. 1992;85(1–3):129–40.

    Article  CAS  Google Scholar 

  33. Samstein RM, Perica K, Balderrama F, Look M, Fahmy TM. The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles. Biomaterials. 2008;29(6):703–8.

    Article  CAS  PubMed  Google Scholar 

  34. Sahni J, Raj S, Ahmad FJ, Khar RK. Design and in vitro characterization of buccoadhesive drug delivery system of insulin. Indian J Pharm Sci. 2008;70(1):61–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wickström H, Palo M, Rijckaert K, Kolakovic R, Nyman JO, Määttänen A, et al. Improvement of dissolution rate of indomethacin by inkjet printing. Eur J Pharm Sci. 2015;75:91–100.

    Article  PubMed  Google Scholar 

  36. Daly R, Harrington TS, Martin GD, Hutchings IM. Inkjet printing for pharmaceutics—a review of research and manufacturing. Int J Pharm [Internet]. [cited 2015 Mar 28]; Available from: http://www.sciencedirect.com/science/article/pii/S0378517315002331.

  37. Huang T, Long M, Huo B. Competitive binding to cuprous ions of protein and BCA in the bicinchoninic acid protein assay. Open Biomed Eng J. 2010;4:271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shugar D. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim Biophys Acta. 1952;8:302–9.

    Article  CAS  PubMed  Google Scholar 

  39. Crook EM, Mathias AP, Rabin BR. Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2′:3′-phosphate. Biochem J. 1960;74(2):234–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoes C, van Batenburg OD, Kerling KE, Havinga E. Enzymatic hydrolysis of 2ʹ,3ʹ-cyclic CMP by homohistidine-12-ribonuclease Sʹ. Biochem Biophys Res Commun. 1977;77(3):1074–7.

    Article  CAS  PubMed  Google Scholar 

  41. Sigma-Aldrich. Product information: lysozyme from chicken egg white for molecular biology. St. Louis, USA.

  42. Sigma-Aldrich. Product information: ribonuclease A from bovine pancreas for molecular biology. St. Louis, USA.

  43. Rathbone M, Senel S, Pather I. Oral mucosal drug delivery and therapy. Springer; 2015. 289 p.

  44. Fan X, Li J, Liu H, Xu N. Using porous polyethylene sheets in late surgical intervention for orbital blowout fractures. Zhonghua Yan Ke Za Zhi [Chin J Ophthalmol]. 2003;39(9):516–9.

    Google Scholar 

  45. Recek N, Jaganjac M, Kolar M, Milkovic L, Mozetič M, Stana-Kleinschek K, et al. Protein adsorption on various plasma-treated polyethylene terephthalate substrates. Molecules. 2013;18(10):12441–63.

    Article  CAS  PubMed  Google Scholar 

  46. Di Risio S, Yan N. Piezoelectric ink-jet printing of horseradish peroxidase: effect of ink viscosity modifiers on activity. Macromol Rapid Commun. 2007;28(18–19):1934–40.

    Article  Google Scholar 

  47. Ferraro P, Coppola S, Grilli S, Paturzo M, Vespini V. Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting. Nat Nanotechnol. 2010;5(6):429–35.

    Article  CAS  PubMed  Google Scholar 

  48. Kisler JM, Stevens GW, O Connor AJ. Adsorption of proteins on mesoporous molecular sieves. Mater Phys Mech. 2001;4:89–93.

    CAS  Google Scholar 

  49. Ramm LE, Whitlow MB, Mayer MM. The relationship between channel size and the number of C9 molecules in the C5b-9 complex. J Immunol Baltim Md 1950. 1985;134(4):2594–9.

    CAS  Google Scholar 

  50. Sousa SG, Delgadillo I, Saraiva JA. Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chem. 2014;151:79–85.

    Article  CAS  PubMed  Google Scholar 

  51. Singh J, Unlu Z, Ranganathan R, Griffiths P. Aggregate properties of sodium deoxycholate and dimyristoylphosphatidylcholine mixed micelles. J Phys Chem B. 2008;112(13):3997–4008.

    Article  CAS  PubMed  Google Scholar 

  52. Gibson M. Pharmaceutical preformulation and formulation: a practical guide from candidate drug selection to commercial dosage form. CRC Press; 2016. 562 p.

  53. Zafra-Gómez A, Luzón-Toro B, Capel-Cuevas S, Morales JC. Stability of hydroxytyrosol in aqueous solutions at different concentration, temperature and with different ionic content: a study using UPLC-MS. Food Nutr Sci. 2011;2(10):1114–20.

    Article  Google Scholar 

  54. Goodall S, Chew N, Chan K, Auriac D, Waters MJ. Aerosolization of protein solutions using thermal inkjet technology. J Aerosol Med Off J Int Soc Aerosols Med. 2002;15(3):351–7.

    Article  CAS  Google Scholar 

  55. Ikeda K, Hamaguchi K, Miwa S, Nishina T. Circular dichroism of human lysozyme. J Biochem (Tokyo). 1972;71(3):371–8.

    CAS  Google Scholar 

  56. Bertucci C, Pistolozzi M, De Simone A. Structural characterization of recombinant therapeutic proteins by circular dichroism. Curr Pharm Biotechnol. 2011;12(10):1508–16.

    Article  CAS  PubMed  Google Scholar 

  57. Rawat S, Gupta P, Kumar A, Garg P, Suri CR, Sahoo DK. Molecular mechanism of poly(vinyl alcohol) mediated prevention of aggregation and stabilization of insulin in nanoparticles. Mol Pharm. 2015;12(4):1018–30.

    Article  CAS  PubMed  Google Scholar 

  58. Wu F-G, Jiang Y-W, Chen Z, Yu Z-W. Folding behaviors of protein (Lysozyme) confined in polyelectrolyte complex micelle. Langmuir. 2016;32(15):3655–64.

    Article  CAS  PubMed  Google Scholar 

  59. Ashton L, Dusting J, Imomoh E, Balabani S, Blanch EW. Shear-induced unfolding of lysozyme monitored in situ. Biophys J. 2009;96(10):4231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. CRC Handbook of Chemistry and Physics, 94th Edition [Internet]. CRC Press. 2013 [cited 2016 May 22]. Available from: https://www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-94th-Edition/Haynes/p/book/9781466571143.

Download references

Acknowledgments

M. Montenegro-Nicolini acknowledges the funding support from CONICYT 21150995. J.O. Morales thanks the financial support from FONDECYT 11130235 and FONDAP 15130011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier O. Morales.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montenegro-Nicolini, M., Miranda, V. & Morales, J.O. Inkjet Printing of Proteins: an Experimental Approach. AAPS J 19, 234–243 (2017). https://doi.org/10.1208/s12248-016-9997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9997-8

KEY WORDS

Navigation