Skip to main content

Advertisement

Log in

Liposomal Drug Product Development and Quality: Current US Experience and Perspective

  • Review Article
  • Theme: Nanotechnology in Complex Drug Products: Learning from the Past, Preparing for the Future
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

Research in the area of liposomes has grown substantially in the past few decades. Liposomes are lipid bilayer structures that can incorporate drug substances to modify the drug’s pharmacokinetic profile thereby improving drug delivery. The agency has received over 400 liposomal drug product submissions (excluding combination therapies), and there are currently eight approved liposomal drug products on the US market. In order to identify the pain points in development and manufacturing of liposomal drug products, a retrospective analysis was performed from a quality perspective on submissions for new and generic liposomal drug products. General analysis on liposomal drug product submissions was also performed. Results indicated that 96% of the submissions were Investigational New Drug (IND) applications, 3% were New Drug Applications (NDAs), and the remaining 1% was Abbreviated New Drug Applications (ANDAs). Doxorubicin hydrochloride was the most commonly used drug substance incorporated into the liposomes (31%). The majority of the liposomal products were administered via intravenous route (84%) with cancer (various types) being the most common indication (63%). From a quality perspective, major challenges during the development of liposomal drug products included identification and (appropriate) characterization of critical quality attributes of liposomal drug products and suitable control strategies during product development. By focusing on these areas, a faster and more efficient development of liposomal drug products may be achieved. Additionally, in this way, the drug review process for such products can be streamlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note: According to 21CFR 320.31, for submissions involving NCEs or cytotoxic drugs, companies are required to submit a BioIND (bioequivalence studies at dose > maximum label) prior to the ANDA submission. Further, as per MAPP 5210.5, Bio-INDs must have complete information on chemistry, manufacturing, and controls, and not only the bioequivalence study protocol, so that the review chemist can adequately evaluate the safety of the drug product.

REFERENCES

  1. Suzuki R, Omata D, Oda Y, Unga J, Negishi Y. Maruyama K. Cancer therapy with nanotechnology-based drug delivery systems: applications and challenges of liposome technologies for advanced cancer therapy. Nanomater Pharmacol. 2016, 457–82. doi: 10.1007/978-1-4939-3121-7_23.

  2. Gregoriadis G. Liposome preparation and related techniques. Liposome Technology. Thirdth ed. Boca Raton: CRC Press, Taylor and Francis Group; 2006.

    Book  Google Scholar 

  3. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi:10.1186/1556-276X-8-102.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wagner A., Vorauer-Uhl K. Liposome technology for industrial purposes. J Drug Deliv. 2011, 2011. doi: 10.1155/2011/591325.

  5. Draft Guidance for Industry. Liposome drug products, chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation. U.S. Food and Drug Administration http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070570.pdf (2015). Accessed 13 Aug 2016.

  6. Product-specific recommendations for generic drug development, U.S. Food and Drug Administration. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm075214.htm Accessed 12 Jun 2016.

  7. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98. doi:10.1016/j.ajps.2014.09.004.

    Article  CAS  Google Scholar 

  8. Delepine P, Guillaume C, Floch V, Loisel S, Yaouanc JJ, Clément JC, et al. Cationic phosphonolipids as nonviral vectors: in vitro and in vivo applications. J Pharm Sci. 2000;89(5):629–38. doi:10.1002/(SICI)1520-6017(200005)89:5<629::AID-JPS8>3.0.CO;2-P.

    Article  CAS  PubMed  Google Scholar 

  9. Heyes J, Palmer L, Bremner K, MacLachlan I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. 2005;107(2):276–87. doi:10.1016/j.jconrel.2005.06.014.

    Article  CAS  PubMed  Google Scholar 

  10. Loisel S, Floch V, Le Gall C, Ferec C. Factors influencing the efficiency of lipoplexes mediated gene transfer in lung after intravenous administration. J Liposome Res. 2001;11(2–3):127–38. doi:10.1081/LPR-100108457.

    Article  CAS  PubMed  Google Scholar 

  11. Agarwal K, Bali A, Gupta CM. Effect of phospholipid structure on stability and survival times of liposomes in circulation. Biochim Biophys Acta Gen Subj. 1986;883(3):468–75. doi:10.1016/0304-4165(86)90286-2.

    Article  CAS  Google Scholar 

  12. Agarwal K, Bali A, Gupta CM. Influence of the phospholipid structure on the stability of liposomesin serum. Biochim Biophys Acta Biomembr. 1986;856(1):36–40. doi:10.1016/0005-2736(86)90006-4.

    Article  CAS  Google Scholar 

  13. Kohli AG, Kierstead PH, Venditto VJ, Walsh CL, Szoka FC. Designer lipids for drug delivery: from heads to tails. J Control Release. 2014; 274–87. doi: 10.1016/j.jconrel.2014.04.047

  14. Lee S-C, Lee K-E, Kim J-J, Lim S-H. The effect of cholesterol in the liposome bilayer on the stabilization of incorporated retinol. J Liposome Res. 2005;15(3–4):157–66. doi:10.1080/08982100500364131.

    Article  CAS  PubMed  Google Scholar 

  15. Crommelin DJA. Liposomes: the science and the regulatory landscape. In: Crommelin DJA, de Vlieger, Jon S.B editor. Non-Biological Complex Drugs, The Science and the Regulatory Landscape. Springer International Publishing; 2015. p. 77–106.

  16. Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release. 2012;164(2):138–44. doi:10.1016/j.jconrel.2012.04.038.

    Article  CAS  PubMed  Google Scholar 

  17. Mochizuki S, Kanegae N, Nishina K, Kamikawa Y, Koiwai K, Masunaga H, et al. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim Biophys Acta Biomembr. 2013;1828(2):412–8. doi:10.1016/j.bbamem.2012.10.017.

    Article  CAS  Google Scholar 

  18. Du Z, Munye MM, Tagalakis AD, Manunta MDI, Hart SL. The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci Rep. 2014;4:7107. doi:10.1038/srep07107.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zelphati O, Wang Y, Kitada S, Reed JC, Felgner PL, Corbeil J. Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. 2001;276(37):35103–10. doi:10.1074/jbc.M104920200.

    Article  CAS  PubMed  Google Scholar 

  20. Chatin B, Mevel M, Devalliere J, Dallet L, Haudebourg T, Peuziat P, et al. Liposome-based formulation for intracellular delivery of functional proteins. Mol Ther Nucleic Acids. 2015;4:e244. doi:10.1038/mtna.2015.17.

    Article  CAS  PubMed  Google Scholar 

  21. Li M, Zou P, Tyner K, Lee S. Physiologically based pharmacokinetic (pbpk) modeling of pharmaceutical nanoparticles. AAPS J. 2017;19(1):26–42. doi:10.1208/s12248-016-0010-3.

    Article  CAS  PubMed  Google Scholar 

  22. Pharmaceutical Development Q8(R2). International Conference on Harmonisation. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf. (2009). Accessed 04 Jun 2016.

  23. Jiang W, Lionberger R, Yu LX. In vitro and in vivo characterizations of PEGylated liposomal doxorubicin. Bioanalysis. 2011;3(3):333–44. doi:10.4155/bio.10.204.

    Article  CAS  PubMed  Google Scholar 

  24. Draft Guidance on Doxorubicin Hydrochloride. U.S. Food and Drug Administration http://www.fda.gov/downloads/Drugs/…/Guidances/UCM199635.pdf. (2014). Accessed 03 Aug 2016.

  25. Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2009;20(3):228–43. doi:10.3109/08982100903347923.

    Article  Google Scholar 

  26. Ai X, Zhong L, Niu H, He Z. Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian J Pharm Sci. 2014;9(5):244–50. doi:10.1016/j.ajps.2014.06.006.

    Article  Google Scholar 

  27. Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34. doi:10.1016/j.jconrel.2012.03.020.

    Article  CAS  PubMed  Google Scholar 

  28. Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv. 2011;8(5):565–80.

    Article  CAS  PubMed  Google Scholar 

  29. Dritschilo A, Huang CH, Rudin CM, Marshall J, Collins B, Dul JL, et al. Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin Cancer Res. 2006;12(4):1251–9. doi:10.1158/1078-0432.ccr-05-1260.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Tan G, Lawson LB, John VT, Papadopoulos KD. Liposomes in double-emulsion globules. Langmuir. 2009;26(5):3225–31. doi:10.1021/la9032157.

    Article  Google Scholar 

  31. Nakhla T, Marek M, Kovalcik T. Issues associated with large-scale production of liposomal formulations. Drug Deliv Tech. (2002);2(4).

  32. Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. J Control Release. 2010;142(3):299–311. doi:10.1016/j.jconrel.2009.10.024.

    Article  CAS  PubMed  Google Scholar 

  33. Ingvarsson PT, Yang M, Nielsen HM, Rantanen J, Foged C. Stabilization of liposomes during drying. Expert Opin Drug Deliv. 2011;8(3):375–88. doi:10.1517/17425247.2011.553219.

    Article  CAS  PubMed  Google Scholar 

  34. Justo OR, Moraes AM. Analysis of process parameters on the characteristics of liposomes prepared by ethanol injection with a view to process scale-up: effect of temperature and batch volume. Chem Eng Res Des. 2011;89(6):785–92. doi:10.1016/j.cherd.2010.09.018.

  35. Peng J, Dong W-J, Li L, Xu J-M, Jin D-J, Xia X-J, et al. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions. J Food Drug Anal. 2015;23(4):828–35. doi:10.1016/j.jfda.2015.04.004.

    Article  CAS  Google Scholar 

  36. Eze MO. Phase transitions in phospholipid bilayers: lateral phase separations play vital roles in biomembranes. Biochem Educ. 1991;19(4):204–8. doi:10.1016/0307-4412(91)90103-F.

    Article  CAS  Google Scholar 

  37. Srinivasan A, Iser R. FDA perspectives: common deficiencies in Abbreviated New Drug Applications: part 1: drug substance. Pharm Technol. 2010;34(1):50–9.

    Google Scholar 

  38. Srinivasan A, Iser R. FDA perspectives: common deficiences in Abbreviated New Drug Applications (part 4). Pharm Technol. 2011;35(4):62–8.

    Google Scholar 

  39. Srinivasan A, Iser R, Gill DS. FDA perspectives: common deficiencies in Abbreviated New Drug Applications: part 2: description, composition, and excipients. Pharm Technol. 2010;34(8):45–51.

    Google Scholar 

  40. Srinivasan A, Iser R, Gill DS. FDA perspectives: common deficiencies in Abbreviated New Drug Applications: part 3-control of the drug product and stability. Pharm Technol. 2011;35(2):58–67.

    Google Scholar 

  41. Draft Guidance on Amphotericin B. U.S. Food and Drug Administration. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM384094.pdf. (2016). Accessed 30 Jun 2016.

  42. Impurities in New Drug Products Q3B (R2). International Conference on Harmonisation. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3B_R2/Step4/Q3B_R2__Guideline.pdf. (2006). Accessed 04 Jan 2017.

  43. FDA. Draft Guidance for Industry: drug product, chemistry, manufacturing, and controls information. U.S. Food and Drug Administration. http://www.fda.gov/OHRMS/DOCKETS/98fr/02d-0525gdl00001.PDF. (2003). Accessed 20 Jul 2016.

  44. Pharmaceutical Quality System Q10. International Conference on Harmonisation. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q10/Step4/Q10_Guideline.pdf. (2008). Accessed 14 Jun 2016.

  45. Quality Risk Management Q9. International Conference on Harmonisation. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q9/Step4/Q9_Guideline.pdf. (2005). Accessed 10 Aug 2016.

  46. Xu X, Khan MA, Burgess DJ. A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment. Int J Pharm. 2011;419(1–2):52–9. doi:10.1016/j.ijpharm.2011.07.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine M. Tyner.

Ethics declarations

Disclaimer

The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any agency determination or policy. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

Additional information

Guest Editors: Katherine Tyner, Sau (Larry) Lee, and Marc Wolfgang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, M., Lee, S.L. & Tyner, K.M. Liposomal Drug Product Development and Quality: Current US Experience and Perspective. AAPS J 19, 632–641 (2017). https://doi.org/10.1208/s12248-017-0049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0049-9

KEY WORDS

Navigation