Skip to main content
Log in

Determination of Reference Ultrasound Parameters for Model and Hydrofluoroalkane Propellants Using High-Resolution Ultrasonic Spectroscopy

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this research was to determine the reference ultrasonic velocity (v) and attenuation coefficient (α) for 2H, 3H-perfluoropentane (HPFP), 1,1,1,2-tetrafluoroethane (HFA-134a) and 1,1,1,2,3,3,3-tetrafluoroethane (HFA-227) propellants, for the future purpose of characterising pressurised metered dose inhaler (pMDI) formulations using high-resolution ultrasonic spectroscopy (HRUS). Perfluoroheptane (PFH) was used as a reference material for HPFP. With its velocity and attenuation coefficient determined at 25 °C, HPFP was subsequently used as a reference for HFA-134a and HFA-227. It was found that there is a linear decline in ultrasonic velocity with an increase in temperature. As with HPFP, the ultrasonic velocity of HFA-134a and HFA-227 were successfully calculated at 25 °C. However, the difference in density and viscosity between reference and sample prevented accurate determination of reference attenuation coefficient for the hydrofluoroalkanes. With ultrasonic velocity alone, dispersion concentration and stability monitoring for experimental pMDI formulations is possible using HRUS. However, at this point in time measurement of particle size is not feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Alba, G. M. Crawley, J. Fatkin, D. M. J. Higgs, and P. G. Kippax. Acoustic spectroscopy as a technique for the particle sizing of high concentration colloids, emulsions and suspensions. Colloids Surf A Physicochem Eng Asp. 153:495–502 (1999).

    Article  CAS  Google Scholar 

  2. Z. Ma, H. G. Merkus, J. G. A. E. de Smet, C. Heffels, and B. Scarlett. New developments in particle characterization by laser diffraction: size and shape. Powder Technol. 111:66–78 (2000).

    Article  CAS  Google Scholar 

  3. S. A. Jones, G. P. Martin, and M. B. Brown. High-pressure aerosol suspensions—A novel laser diffraction particle sizing system for hydrofluoroalkane pressurised metered dose inhalers. Int J Pharm. 302:154–165 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. J. Ziegler, and H. Wachtel. Comparison of cascade impaction and laser diffraction for particle size distribution measurements. J Aerosol Sci. 18:311–324 (2005).

    Article  Google Scholar 

  5. W. T. J. Kwong, S. L. Ho, and A. L. Coates. Comparison of nebulized particle size distribution with Malvern laser diffraction analyzer versus Andersen cascade impactor and low-flow Marple personal cascade impactor. J Aerosol Med. 13:303–314 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. C. Lemarchand, P. Couveur, C. Vauthier, D. Constantini, and R. Gref. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. Int J Pharm. 254:77–82 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. O. Mengual, G. Meunier, I. Cayre, K. Puech, and P. Snabre. Characterisation of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000. Colloids Surf A Physicochem. Eng. Asp. 152:111–123 (1999).

    Article  CAS  Google Scholar 

  8. R. Ashayer, P. F. Luckham, S. Manimaaran, and P. Rogueda. Investigation of the molecular interactions in a pMDI formulation by atomic force microscopy. Eur. J. Pharm. Sci. 21:533–543 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. H. D. Smyth. The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv. Drug. Deliv. Rev. 55:807–828 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. S. A. Jones, G. P. Martin, and M. B. Brown. Manipulation of beclomethasone-hydrofluoroalkane interactions using biocompatible macromolecules. J. Pharm. Sci. 95:1060–1074 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. P. G. Rogueda. HPFP, a Model Propellant for pMDIs. Drug Dev. Ind. Pharm. 29:39–49 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. R. O. Williams 3rd, M. A. Repka, and M. K. Barron. Application of co-grinding to formulate a model pMDI suspension. Eur. J. Pharm. Biopharm. 48:131–140 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Michael, M. J. Snowden, B. Z. Chowdhry, I. C. Ashurst, C. J. Davies-Cutting, and T. Riley. Characterisation of the aggregation behaviour in a salmeterol and fluticasone propionate inhalation aerosol system. Int. J. Pharm. 221:165–174 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. A. Brindley. The chlorofluorocarbon to hydrofluoroalkane transition: the effect on pressurised metered dose inhaler stability. J. Allergy Clin. Immunol. 104:S211–226 (1999).

    Article  Google Scholar 

  15. A. S. Dukhin, and P. J. Goetz. Ultrasound for characterising colloids—Particle sizing, Zeta Potential, Rheology, Elsevier Science B.V., Amsterdam, 2002.

    Book  Google Scholar 

  16. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), Office of Regulatory Affairs (ORA). Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance http://www.fda.gov/Cder/guidance/6419fnl.pdf.

  17. V. A. del Grosso, and C. W. Mader. Speed of Sound in Pure Water. J. Acoust. Soc. Am. 52:1442–1972 (1972).

    Article  CAS  Google Scholar 

  18. T. A. Litovitz. Ultrasonic spectroscopy in liquids. J. Acoust. Soc. Am. 11:681–691 (1959).

    Article  Google Scholar 

  19. V. A. Buckin, E. Kudryashov, and B. O’Driscoll. High-resolution ultrasonic spectroscopy for material analysis. Am. Lab. 34:28, 31–32 (2002).

    Google Scholar 

  20. J. R. Allegra, and S. A. Hawley. Attenuation of sound in suspensions and emulsions: Theory and experiments. J. Acoust. Soc. Am. 51:1545–1564 (1971).

    Article  Google Scholar 

  21. L. Lehmann, and V. Buckin. Determination of the heat stability profiles of concentrated milk and milk ingredients using high resolution ultrasonic spectroscopy. J. Dairy. Sci. 88:3121–3129 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. V. A. Buckin, and C. Smyth. High-resolution ultrasonic resonator measurements for analysis of liquids. Semin. Food Anal. 4:89–105 (1999).

    Google Scholar 

  23. U. Riebel, and F. Löffler. The fundamentals of particle size analysis by means of ultrasonic spectrometry. Part Part Syst. Charact. 6:135–143 (1989).

    Article  CAS  Google Scholar 

  24. P. G. Rogueda, V. Buckin, and E. Kudryashov. Size and concentration monitoring of hfa suspensions. Respiratory Drug Delivery X. April 23–27, 2006; Boca Raton, FL

  25. A. Goebel, and K. Lunkenheimer. Interfacial tension of the water/n-alkane interface. Langmuir. 13:369–372 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Faculty of Pharmacy at the University of Sydney (Australia) and AstraZeneca R&D Loughborough (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Traini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoe, S., Young, P.M., Rogueda, P. et al. Determination of Reference Ultrasound Parameters for Model and Hydrofluoroalkane Propellants Using High-Resolution Ultrasonic Spectroscopy. AAPS PharmSciTech 9, 605–611 (2008). https://doi.org/10.1208/s12249-008-9087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9087-z

Key words

Navigation