Skip to main content
Log in

Pediatric Suppositories of Sulpiride Solid Dispersion for Treatment of Tourette Syndrome: In Vitro and In Vivo Investigations

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Pharmaceutical development was adopted in the current study to propose a pediatric rectal formulation of sulpiride as a substitute to the available oral or parenteral formulations in the management of Tourette syndrome (TS). The goal was to formulate a product that is easy to use, stable, and highly bioavailable and to achieve a rapid clinical efficacy. Towards this aim, sulpiride solid dispersion (SD) with tartaric acid at a weight ratio of 1:0.25 was incorporated into different suppository bases, namely witepsol W25, witepsol H15, witepsol E75, suppocire NA, suppocire A, glycerogelatin, and polyethylene glycols. The formulae were evaluated in vitro using different pharmacotechnical methods such as visual, melting, weight and content uniformities, drug release, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analyses. In vivo bioavailability was also assessed in rabbits to compare the bioavailability of either raw sulpiride-incorporated or its SD-incorporated witepsol H15-based suppositories to its oral suspension (reference). Sulpiride SD-incorporated witepsol H15 formulation showed acceptable in vitro characteristics with a bioavailability of 117% relative to oral dosing, which excel that in humans (27% after dosing of oral product). In addition, the proposed formula not only passed the 6-month stability study but also proposed a promising scale-up approach. Hence, it showed a great potential for pediatric product development to manage TS in rural areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Robertson MM. Tourette syndrome, associated conditions and the complexities of treatment. Brain. 2000;123(Pt 3):425–62.

    Article  PubMed  Google Scholar 

  2. Buse J, Kirschbaum C, Leckman JF, Munchau A, Roessner V. The modulating role of stress in the onset and course of Tourette’s syndrome: a review. Behav Modif. 2014;38:184–216.

    Article  PubMed  Google Scholar 

  3. Muller-Vahl KR. The benzamides tiapride, sulpiride, and amisulpride in treatment for Tourette’s syndrome. Der Nervenarzt. 2007;78:264. p. 266–268, 270–271.

    Article  CAS  PubMed  Google Scholar 

  4. Jin R, Zheng RY, Huang WW, Xu HQ, Shao B, Chen H, et al. Epidemiological survey of Tourette syndrome in children and adolescents in Wenzhou of P.R. China. Eur J Epidemiol. 2005;20:925–7.

    Article  PubMed  Google Scholar 

  5. Ernest TB, Elder DP, Martini LG, Roberts M, Ford JL. Developing paediatric medicines: identifying the needs and recognizing the challenges. J Pharm Pharmacol. 2007;59:1043–55.

    Article  CAS  PubMed  Google Scholar 

  6. Simba DO, Warsame M, Kimbute O, Kakoko D, Petzold M, Tomson G, et al. Factors influencing adherence to referral advice following pre-referral treatment with artesunate suppositories in children in rural Tanzania. Trop Med Int Health. 2009;14:775–83.

    Article  CAS  PubMed  Google Scholar 

  7. Mohamed RA, Abass HA, Attia MA, Heikal OA. Formulation and evaluation of metoclopramide solid lipid nanoparticles for rectal suppository. J Pharm Pharmacol. 2013;65:1607–21.

    Article  CAS  PubMed  Google Scholar 

  8. Kauss T, Gaudin K, Gaubert A, Ba B, Tagliaferri S, Fawaz F, et al. Screening paediatric rectal forms of azithromycin as an alternative to oral or injectable treatment. Int J Pharm. 2012;436:624–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wiesel FA, Alfredsson G, Ehrnebo M, Sedvall G. The pharmacokinetics of intravenous and oral sulpiride in healthy human subjects. Eur J Clin Pharmacol. 1980;17:385–91.

    Article  CAS  PubMed  Google Scholar 

  10. Emam SE, Ghazy FS, Zidan AS, Shehata TM. Solid dispersion approach for optimized bioavailability of sulpiride. Lat Am J Pharm. 2013;32:902–10.

    CAS  Google Scholar 

  11. Lu Y, Tang N, Lian R, Qi J, Wu W. Understanding the relationship between wettability and dissolution of solid dispersion. Int J Pharm. 2014;465:25–31.

    Article  CAS  PubMed  Google Scholar 

  12. Chokshi RJ, Zia H, Sandhu HK, Shah NH, Malick WA. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons. Drug Deliv. 2007;14:33–45.

    Article  CAS  PubMed  Google Scholar 

  13. Varma MM, Pandi JK. Dissolution, solubility, XRD, and DSC studies on flurbiprofen-nicotinamide solid dispersions. Drug Dev Ind Pharm. 2005;31:417–23.

    Article  CAS  PubMed  Google Scholar 

  14. Alves LD, de La Roca Soares MF, de Albuquerque CT, da Silva ER, Vieira AC, Fontes DA, et al. Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydr Polym. 2014;104:166–74.

    Article  CAS  PubMed  Google Scholar 

  15. USP35/NF30, 2012. United States Pharmacopoeia/National Formulary (USP35/NF30), The United States Pharmacopoeial Convention, Rockville, MD, 2012.

  16. Kauss T, Gaubert A, Boyer C, Ba BB, Manse M, Massip S, et al. Pharmaceutical development and optimization of azithromycin suppository for paediatric use. Int J Pharm. 2013;441:218–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Allen LV. Suppositories first edition. In: J.L.V. A, editor. First ed. London-Chicago: Pharmaceutical Press; 2007. p. 139–47.

  18. Hanaee J, Javadzadeh Y, Taftachi S, Farid D, Nokhodchi A. The role of various surfactants on the release of salbutamol from suppositories. Farmaco. 2004;59:903–6.

    Article  CAS  PubMed  Google Scholar 

  19. Nobilis M, Vybiralova Z, Szotakova B, Sladkova K, Kunes M, Svoboda Z. High-performance liquid chromatographic determination of tiapride and its phase I metabolite in blood plasma using tandem UV photodiode-array and fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:3845–52.

    Article  CAS  Google Scholar 

  20. WHO. Proposal to waive in vivo bioequivalence requirements for the WHO model list of essential medicines immediate release, solid oral dosage forms. In: WHO, editor. Geneva: World Health Organization; 2005. p. 1–44.

  21. Iqbal B, Ali A, Ali J, Baboota S, Gupta S, Dang S, et al. Recent advances and patents in solid dispersion technology. Recent Patents Drug Deliv Formulation. 2011;5:244–64.

    Article  CAS  Google Scholar 

  22. Kalia A, Poddar M. Solid dispersions: an approach towards enhancing dissolution rate. Int J Pharm Pharm Sci. 2011;3:9–19.

    Google Scholar 

  23. Bressolle F, Bres J, Faure-Jeantis A. Absolute bioavailability, rate of absorption, and dose proportionality of sulpiride in humans. J Pharm Sci. 1992;81:26–32.

    Article  CAS  PubMed  Google Scholar 

  24. Yuvaraja K, Khanam J. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal. 2014;96:10–20.

    Article  CAS  PubMed  Google Scholar 

  25. Ingram AJ, Butterworth KR, Gaunt IF, Gangolli SD. Short-term toxicity study of metatartaric acid in rats. Food Chem Toxicol. 1982;20:253–7.

    Article  CAS  PubMed  Google Scholar 

  26. Oribe T, Yamada M, Takeuchi K, Tsunemi S, Imasaka K, Shirakura O, et al. Formulation and in vivo-in vitro correlation of the dissolution property of lemildipine solid dispersions-incorporated suppositories. Int J Pharm. 1995;124:27–35.

    Article  CAS  Google Scholar 

  27. Vippagunta SR, Wang Z, Hornung S, Krill SL. Factors affecting the formation of eutectic solid dispersions and their dissolution behavior. J Pharm Sci. 2007;96:294–304.

    Article  CAS  PubMed  Google Scholar 

  28. Kwon H, Jung S, Cho SW, Kil DS, Roh KM, Lim JW. Solid-solution nanocrystallite formation by high-energy milling. J Nanosci Nanotechnol. 2013;13:6165–8.

    Article  CAS  PubMed  Google Scholar 

  29. Six K, Berghmans H, Leuner C, Dressman J, Van Werde K, Mullens J, et al. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion, part II. Pharm Res. 2003;20:1047–54.

    Article  CAS  PubMed  Google Scholar 

  30. Hammouda YE, Kasim NA, Nada AH. Formulation and in vitro evaluation of verapamil HCl suppositories. Int J Pharm. 1993;89:111–8.

    Article  CAS  Google Scholar 

  31. Chawla G, Bansal AK. Improved dissolution of a poorly water soluble drug in solid dispersions with polymeric and non-polymeric hydrophilic additives. Acta Pharm Hung. 2008;58:257–74.

    CAS  Google Scholar 

  32. Miyake M, Kamada N, Oka Y, Mukai T, Minami T, Toguchi H, et al. Development of suppository formulation safely improving rectal absorption of rebamipide, a poorly absorbable drug, by utilizing sodium laurate and taurine. J Control Release. 2004;99:63–71.

    Article  CAS  PubMed  Google Scholar 

  33. Janicki S, Sznitowska M, Zebrowska W, Gabiga H, Kupiec M. Evaluation of paracetamol suppositories by a pharmacopoeial dissolution test—comments on methodology. Eur J Pharm Biopharm. 2001;52:249–54.

    Article  CAS  PubMed  Google Scholar 

  34. Itoh S, Teraoka N, Matsuda T, Okamoto K, Takagi T, Oo C, et al. Reciprocating dialysis tube method: periodic tapping improved in vitro release/dissolution testing of suppositories. Eur J Pharm Biopharm. 2006;64:393–8.

    Article  CAS  PubMed  Google Scholar 

  35. Varshney HM, Tanwar YS. Formulation, physicochemical characterisations and in vitro evaluation of flurbiprofen. J Pharm Res. 2010;3:561–5.

    CAS  Google Scholar 

  36. Abass H, Kamel R, Abdelbary A. Metronidazole bioadhesive vaginal suppositories: formulation, in vitro and in vivo evaluation. Int J Pharm Pharm Sci. 2012;4:344–55.

    CAS  Google Scholar 

  37. De Muynck C, Remon JP. Influence of fat composition on the melting behaviour and on the in vitro release of indomethacin suppositories. Int J Pharm. 1992;85:103–12.

    Article  Google Scholar 

  38. Aoyagi N, Kaniwa N, Takeda Y, Uchiyama M, Takamura F, Kido Y. Release rates of indomethacin from commercial witepsol suppositories and the bioavailabilities in rabbits and pigs. Chem Pharm Bull. 1988;36:4933–40.

    Article  CAS  PubMed  Google Scholar 

  39. Palanisamy M, Khanam J. Solid dispersion of prednisolone: solid state characterization and improvement of dissolution profile. Drug Dev Ind Pharm. 2011;37:373–86.

    Article  CAS  PubMed  Google Scholar 

  40. de Blaey CJ, Rutten-Kingma JJ. Biopharmaceutics of aminophylline suppositories. II. In vitro release rate during storage. Pharm Acta Helv. 1977;52:11–4.

    PubMed  Google Scholar 

  41. Zimmer D. New US FDA draft guidance on bioanalytical method validation versus current FDA and EMA guidelines: chromatographic methods and ISR. Bioanalysis. 2014;6:13–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yamada I, Mizuta H, Ogawa K, Tahara T. Comparative pharmacokinetics of sulpiride and N-[(1-butyl-2-pyrrolidinyl)methyl]-2-methyl-5-sulfamoyl-2,3-dihydrobenzofuran-7-carboxamide hydrochloride, a new lipophilic substituted benzamide in rats. Chem Pharm Bull. 1990;38:2552–5.

    Article  CAS  PubMed  Google Scholar 

  43. Imondi AR, Alam AS, Brennan JJ, Hagerman LM. Metabolism of sulpiride in man and rhesus monkeys. Arch Int Pharmacodyn Ther. 1978;232:79–91.

    CAS  PubMed  Google Scholar 

  44. Helmy SA. Therapeutic drug monitoring and pharmacokinetic compartmental analysis of sulpiride double-peak absorption profile after oral administration to human volunteers. Biopharm Drug Dispos. 2013;34:288–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Zidan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidan, A.S., Emam, S.E., Shehata, T.M. et al. Pediatric Suppositories of Sulpiride Solid Dispersion for Treatment of Tourette Syndrome: In Vitro and In Vivo Investigations. AAPS PharmSciTech 16, 645–655 (2015). https://doi.org/10.1208/s12249-014-0250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0250-4

KEY WORDS

Navigation