Skip to main content

Advertisement

Log in

Growth Factor-Loaded Nano-niosomal Gel Formulation and Characterization

  • Research Article
  • Theme: Formulation and Delivery of Macromolecules
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Controlled delivery of signaling factors could be a great approach in the tissue engineering field. Nano-niosomal drug delivery systems offer numerous advantages for this purpose. The present study reports the formulation and evaluation of a growth factor (GF)-loaded nano-niosome-hydrogel composite for GF delivery to modulate cell behavior. Niosomes were prepared, using span 60 surfactant with cholesterol (CH) in diethyl ether solvent, by reverse-phase evaporation technique. Basic fibroblast growth factor (bFGF) and bovine serum albumin (BSA) were loaded simultaneously and the final suspension was embedded into agarose hydrogel. Particle size, vesicle morphology, protein entrapment efficiency (EE), and release profile were measured by dynamic light scattering (DLS) nanoparticle size analyzer, transmission electron microscopy (TEM) and NanoDrop spectrophotometry methods, respectively. The release and performance of bFGF were revealed via human umbilical vein endothelial cell (HUVEC) proliferation using microscopy imaging and MTT assay. Nano-niosomes had an average particle size of 232 nm and had encapsulated 58% of the total proteins present in the suspension. bFGF-BSA-loaded niosomal gel considerably enhanced HUVEC proliferation. This GF-loaded niosomal hydrogel could be a potent material in many biomedical applications including the induction of angiogenesis in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36.

    Article  CAS  PubMed  Google Scholar 

  2. Verma S, Singh SK, Syan N, Mathur P, Valecha V. Nanoparticle vesicular systems: a versatile tool for drug delivery. J Chem Pharm Res. 2010;2(2):496–509.

    CAS  Google Scholar 

  3. Moghassemi S, Parnian E, Hakamivala A, Darzianiazizi M, Vardanjani MM, Kashanian S, et al. Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. Mater Sci Eng C. 2015;46:333–40.

    Article  CAS  Google Scholar 

  4. Madan J, Kaushik D, Sardana S, Mishra D. Effect of ciprofloxacin and chloramphenicol on humoral immune response elicited by bovine albumin encapsulated in niosomes. Acta Pharm Sin. 2007;42(8):905.

    Google Scholar 

  5. Moghassemi S, Hadjizadeh A, Omidfar K. Formulation and characterization of bovine serum albumin-loaded niosome. AAPS PharmSciTech. 2016;1–7.

  6. Tarekegn A, Joseph NM, Palani S, Zacharia A, Ayenew Z. Niosomes in targeted drug delivery: some recent advances. IJPSR. 2010;1(9):1–8.

    CAS  Google Scholar 

  7. Carey P, Schneider H, Bernstein H. Raman spectroscopic studies of ligand-protein interactions: the binding of methyl orange by bovine serum albumin. Biochem Biophys Res Commun. 1972;47(3):588–95.

    Article  CAS  PubMed  Google Scholar 

  8. Filová E, Rampichová M, Litvinec A, Držík M, Míčková A, Buzgo M, et al. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int J Pharm. 2013;447(1):139–49.

    Article  PubMed  Google Scholar 

  9. Quinlan E, López‐Noriega A, Thompson EM, Hibbitts A, Cryan SA, O’Brien FJ. Controlled release of vascular endothelial growth factor from spray‐dried alginate microparticles in collagen–hydroxyapatite scaffolds for promoting vascularization and bone repair. J Tissue Eng Regen Med. 2015.

  10. Zhang S, Wang G, Lin X, Chatzinikolaidou M, Jennissen HP, Laub M, et al. Polyethylenimine‐coated albumin nanoparticles for BMP‐2 delivery. Biotechnol Prog. 2008;24(4):945–56.

    Article  CAS  PubMed  Google Scholar 

  11. Wang G, Siggers K, Zhang S, Jiang H, Xu Z, Zernicke RF, et al. Preparation of BMP-2 containing bovine serum albumin (BSA) nanoparticles stabilized by polymer coating. Pharm Res. 2008;25(12):2896–909.

    Article  CAS  PubMed  Google Scholar 

  12. Das S, Banerjee R, Bellare J. Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs. 2005;18(2):203–12.

    Google Scholar 

  13. Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157(2):168–82.

    Article  CAS  PubMed  Google Scholar 

  14. Wagner S, Rothweiler F, Anhorn MG, Sauer D, Riemann I, Weiss EC, et al. Enhanced drug targeting by attachment of an anti αv integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials. 2010;31(8):2388–98.

    Article  CAS  PubMed  Google Scholar 

  15. Merodio M, Irache JM, Valamanesh F, Mirshahi M. Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials. 2002;23(7):1587–94.

    Article  CAS  PubMed  Google Scholar 

  16. Li F-Q, Su H, Wang J, Liu J-Y, Zhu Q-G, Fei Y-B, et al. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Pharm. 2008;349(1):274–82.

    Article  CAS  PubMed  Google Scholar 

  17. Lu W, Zhang Y, Tan Y-Z, Hu K-L, Jiang X-G, Fu S-K. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release. 2005;107(3):428–48.

    Article  CAS  PubMed  Google Scholar 

  18. Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release. 2007;118(1):38–53.

    Article  CAS  PubMed  Google Scholar 

  19. Martina M-S, Nicolas V, Wilhelm C, Ménager C, Barratt G, Lesieur S. The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages. Biomaterials. 2007;28(28):4143–53.

    Article  CAS  PubMed  Google Scholar 

  20. Lao L, Wang Y, Zhu Y, Zhang Y, Gao C. Poly (lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med. 2011;22(8):1873–84.

    Article  CAS  PubMed  Google Scholar 

  21. Waddad AY, Abbad S, Yu F, Munyendo WL, Wang J, Lv H, et al. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int J Pharm. 2013;456(2):446–58.

    Article  CAS  PubMed  Google Scholar 

  22. Awada HK, Johnson NR, Wang Y. Dual delivery of vascular endothelial growth factor and hepatocyte growth factor coacervate displays strong angiogenic effects. Macromol Biosci. 2014;14(5):679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang G, Wang J, Li L, Ding S, Zhou S. Electrospun micelles/drug‐loaded nanofibers for time‐programmed multi‐agent release. Macromol Biosci. 2014;14(7):965–76.

    Article  CAS  PubMed  Google Scholar 

  24. Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev. 2008;60(2):229–42.

    Article  CAS  PubMed  Google Scholar 

  25. Monteiro N, Martins A, Pires R, Faria S, Fonseca NA, Moreira JN, et al. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomater Sci. 2014;2(9):1195–209.

    Article  CAS  Google Scholar 

  26. Watanabe J, Shen H, Akashi M. Polyelectrolyte droplets facilitate versatile layer-by-layer coating for protein loading interface. Acta Biomater. 2008;4(5):1255–62.

    Article  CAS  PubMed  Google Scholar 

  27. Gurrapu A, Jukanti R, Bobbala SR, Kanuganti S, Jeevana JB. Improved oral delivery of valsartan from maltodextrin based proniosome powders. Adv Powder Technol. 2012;23(5):583–90.

    Article  CAS  Google Scholar 

  28. Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  29. Firthouse PM, Halith SM, Wahab S, Sirajudeen M, Mohideen SK. Formulation and evaluation of miconazole niosomes. Int J PharmTech Res. 2011;3(2):1019–22.

    Google Scholar 

  30. Li Z, Qu T, Ding C, Ma C, Sun H, Li S, et al. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis. Acta Biomater. 2015;13:88–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of Iran National Science Foundation (INSF) and Iran Nanotechnology Initiative Council (INIC) for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afra Hadjizadeh.

Additional information

Guest Editors: Jason T. McConville and Javier O. Morales

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghassemi, S., Hadjizadeh, A., Hakamivala, A. et al. Growth Factor-Loaded Nano-niosomal Gel Formulation and Characterization. AAPS PharmSciTech 18, 34–41 (2017). https://doi.org/10.1208/s12249-016-0579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0579-y

KEY WORDS

Navigation