Skip to main content
Log in

Development and Performance of a Highly Sensitive Model Formulation Based on Torasemide to Enhance Hot-Melt Extrusion Process Understanding and Process Development

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the use of torasemide as a highly sensitive indicator substance and to develop a formulation thereof for establishing quantitative relationships between hot-melt extrusion process conditions and critical quality attributes (CQAs). Using solid-state characterization techniques and a 10 mm lab-scale co-rotating twin-screw extruder, we studied torasemide in a Soluplus® (SOL)-polyethylene glycol 1500 (PEG 1500) matrix, and developed and characterized a formulation which was used as a process indicator to study thermal- and hydrolysis-induced degradation, as well as residual crystallinity. We found that torasemide first dissolved into the matrix and then degraded. Based on this mechanism, extrudates with measurable levels of degradation and residual crystallinity were produced, depending strongly on the main barrel and die temperature and residence time applied. In addition, we found that 10% w/w PEG 1500 as plasticizer resulted in the widest operating space with the widest range of measurable residual crystallinity and degradant levels. Torasemide as an indicator substance behaves like a challenging-to-process API, only with higher sensitivity and more pronounced effects, e.g., degradation and residual crystallinity. Application of a model formulation containing torasemide will enhance the understanding of the dynamic environment inside an extruder and elucidate the cumulative thermal and hydrolysis effects of the extrusion process. The use of such a formulation will also facilitate rational process development and scaling by establishing clear links between process conditions and CQAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Melt BJ. Extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54(2):107–17.

    Article  Google Scholar 

  2. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33(9):909–26.

    Article  CAS  PubMed  Google Scholar 

  3. Stanković M, Frijlink HW, Hinrichs WLJ. Polymeric formulations for drug release prepared by hot melt extrusion: application and characterization. Drug Discov Today. 2015;20(7):812–23.

    Article  PubMed  Google Scholar 

  4. Theil F, Anantharaman S, Kyeremateng SO, van Lishaut H, Dreis-Kühne SH, Rosenberg J, et al. Frozen in time: kinetically stabilized amorphous solid dispersions of Nifedipine stable after a quarter century of storage. Mol Pharm. 2017;14(1):183–92.

    Article  CAS  PubMed  Google Scholar 

  5. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17(1):20–42.

    Article  CAS  PubMed  Google Scholar 

  6. Lang B, McGinity JW, Williams RO. Hot-melt extrusion—basic principles and pharmaceutical applications. Drug Dev Ind Pharm. 2014;40(9):1133–55.

    Article  CAS  PubMed  Google Scholar 

  7. Thiry J, Krier F, Evrard B. A review of pharmaceutical extrusion: critical process parameters and scaling-up. Int J Pharm. 2015;479(1):227–40.

    Article  CAS  PubMed  Google Scholar 

  8. Eitzlmayr A, Koscher G, Reynolds G, Huang Z, Booth J, Shering P, et al. Mechanistic modeling of modular co-rotating twin-screw extruders. Int J Pharm. 2014;474(1–2):157–76.

    Article  CAS  PubMed  Google Scholar 

  9. Rauwendaal C. Polymer extrusion. 5th ed. Carl Hanser: Munich; 2001.

    Google Scholar 

  10. Zecevic DE, Wagner KG. Rational development of solid dispersions via hot-melt extrusion using screening, material characterization, and numeric simulation tools. J Pharm Sci. 2013;102(7):2297–310.

    Article  CAS  PubMed  Google Scholar 

  11. Zecevic DE. Solid dispersions via hot-melt extrusion—formulation and process aspects [dissertation]. Tübingen: Eberhard Karls Universität Tübingen; 2014.

    Google Scholar 

  12. Chokshi R, Hot-Melt Extrusion ZH. Technique: A Review. Iran J Pharm Res. 2010;3(1):3–16.

    Google Scholar 

  13. Tadmor Z, Gogos CG. Principles of polymer processing. 2nd ed. New Jersey: Wiley; 2006.

    Google Scholar 

  14. Gogos CG, Liu H, Wang P. Laminar dispersive and distributive mixing with dissolution and applications to hot-melt extrusion. Douroumis D, editor Hot-Melt Extrusion: Pharmaceutical Applications United Kingdom: John Wiley & Sons, Ltd. 2012:261–84.

  15. Li M, Gogos CG, Ioannidis N. Improving the API dissolution rate during pharmaceutical hot-melt extrusion I: effect of the API particle size, and the co-rotating, twin-screw extruder screw configuration on the API dissolution rate. Int J Pharm. 2015;478(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  16. Verreck G, Decorte A, Heymans K, Adriaensen J, Liu D, Tomasko D, et al. Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int J Pharm. 2006;327(1–2):45–50.

    Article  CAS  PubMed  Google Scholar 

  17. Guo Z, Lu M, Li Y, Pang H, Lin L, Liu X, et al. The utilization of drug–polymer interactions for improving the chemical stability of hot-melt extruded solid dispersions. J Pharm Pharmacol. 2014;66(2):285–96.

    Article  CAS  PubMed  Google Scholar 

  18. Lakshman JP, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm. 2008;5(6):994–1002.

    Article  CAS  PubMed  Google Scholar 

  19. Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the chemical stability of amorphous solid dispersion with Cocrystal technique by hot melt extrusion. Pharm Res. 2012;29(3):806–17.

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh I, Vippagunta R, Li S, Vippagunta S. Key considerations for optimization of formulation and melt-extrusion process parameters for developing thermosensitive compound. Pharm Dev Technol. 2012;17(4):502–10.

    Article  CAS  PubMed  Google Scholar 

  21. Munjal M, Stodghill SP, ElSohly MA, Repka MA. Polymeric systems for amorphous Δ9-tetrahydrocannabinol produced by a hot-melt method. Part I: chemical and thermal stability during processing. J Pharm Sci. 2006;95(8):1841–53.

    Article  CAS  PubMed  Google Scholar 

  22. Haser A, Huang S, Listro T, White D, Zhang F. An approach for chemical stability during melt extrusion of a drug substance with a high melting point. Int J Pharm. 2017;524(1–2):55–64.

    Article  CAS  PubMed  Google Scholar 

  23. DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams RO III, McGinity JW. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. Eur J Pharm Biopharm. 2010;74(2):340–51.

    Article  CAS  PubMed  Google Scholar 

  24. Hughey JR, DiNunzio JC, Bennett RC, Brough C, Miller DA, Ma H, et al. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2010;11(2):760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Surasarang SH, Keen JM, Huang S, Zhang F, McGinity JW, Williams RO. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole. Drug Dev Ind Pharm. 2016 Sep 12:1–15.

  26. Kulthe VV, Chaudhari PD. Effectiveness of spray congealing to obtain physically stabilized amorphous dispersions of a poorly soluble thermosensitive API. AAPS PharmSciTech. 2014;15(6):1370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Zhu L, Wang P, Zhang X, Gogos CG. Effects of screw configuration on indomethacin dissolution behavior in Eudragit E PO. Adv Polym Technol. 2012;31(4):331–42.

    Article  CAS  Google Scholar 

  28. Flanagan F, Hein E, Choi R, Yang F, McQuade M, Neu C, et al. Measurement of hot melt extrusion thermal residence distributions. In: Society of Plastics Engineers ANTEC Conference Proceedings; 2016 May 23-25; Indianapolis, Indiana p 806–11.

  29. Vigh T, Drávavölgyi G, Sóti PL, Pataki H, Igricz T, Wagner I, et al. Predicting final product properties of melt extruded solid dispersions from process parameters using Raman spectrometry. J Pharm Biomed Anal. 2014;98:166–77.

    Article  CAS  PubMed  Google Scholar 

  30. Jovic Z, Zivanovic L, Protic A, Radisic M, Lausevic M, Malesevic M, et al. Forced degradation study of torasemide: characterization of its degradation products. J Liq Chromatogr Relat Technol. 2013;36(15):2082–94.

    CAS  Google Scholar 

  31. Kyeremateng SO, Pudlas M, Woehrle GH. A fast and reliable empirical approach for estimating solubility of crystalline drugs in polymers for hot melt extrusion formulations. J Pharm Sci. 2014;103(9):2847–58.

    Article  CAS  PubMed  Google Scholar 

  32. DiNunzio JC, Miller DA. Formulation development of amorphous solid dispersions prepared by melt extrusion. In: Repka MA, Langley N, DiNunzio J, editors. Melt Extrusion. 1st ed. New York: Springer-Verlag; 2013. p. 161–203.

    Chapter  Google Scholar 

  33. Pharmaceutical Development Annex to Q8(R2) [Internet]. ICH; 2009. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf

  34. Unlu E, Faller JF. RTD in twin-screw food extrusion. J Food Eng. 2002;53(2):115–31.

    Article  Google Scholar 

  35. Gryczke A. Hot-melt extrusion process design using process analytical technology. In: Repka MA, Langley N, DiNunzio J, editors. Melt Extrusion. 1st ed. New York: Springer-Verlag; 2013.

    Google Scholar 

  36. Kolter K, Karl M, Gryczke A. Hot-melt extrusion with BASF pharma polymers. 2nd ed. BASF SE: Ludwigshafen, Germany; 2012.

    Google Scholar 

  37. Filić D, Dumić M, Klepić B, Danilovski A, Tudja M, inventors; Pliva d.d., assignee. Amorphous torasemide modification. United States patent US 6,767,917 B1. 2004 Jul 27.

  38. Alshahrani SM, Morott JT, Alshetaili AS, Tiwari RV, Majumdar S, Repka MA. Influence of degassing on hot-melt extrusion process. Eur J Pharm Sci. 2015;80:43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G. Long-term physical stability of PVP- and PVPVA-amorphous solid dispersions. Mol Pharm. 2017;14(1):157–71.

    Article  CAS  PubMed  Google Scholar 

  40. Wagner JR Jr, Mount EM III, Giles HF Jr. Extrusion: the definitive processing guide and handbook. 2nd. ed. Waltham, MA: William Andrew; 2014.

  41. Yalçinyuva T, Kamal MR, Lai-Fook RA, Özgümüs S. Hydrolytic depolymerization of polyethylene terephthalate by reactive extrusion. Int Polym Process. 2000;15(2):137–46.

    Article  Google Scholar 

  42. Lim L-T, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33(8):820–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Karlheinz Rauwolf, Teresa Dagenbach, David Gessner, and Stefan Weber of AbbVie for their support in conducting the experiments and Mirko Pauli, Mario Hirth, Thomas Kessler, Christian Schley, and Ariana Low of AbbVie and Esther Bochmann of the University of Bonn for helpful and productive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl G. Wagner.

Ethics declarations

Disclosures

Rachel C. Evans, Samuel O. Kyeremateng, Lutz Asmus, Matthias Degenhardt, and Joerg Rosenberg are employees of AbbVie and may own AbbVie stock options. Karl G. Wagner is an employee of the University of Bonn. The design, study conduct, and financial support for this research were provided by AbbVie. AbbVie participated in the interpretation of data, review, and approval of the publication.

Electronic supplementary material

ESM 1

(DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, R.C., Kyeremateng, S.O., Asmus, L. et al. Development and Performance of a Highly Sensitive Model Formulation Based on Torasemide to Enhance Hot-Melt Extrusion Process Understanding and Process Development. AAPS PharmSciTech 19, 1592–1605 (2018). https://doi.org/10.1208/s12249-018-0970-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0970-y

KEY WORDS

Navigation