Skip to main content

Advertisement

Log in

Cardioprotective Efficacy of Silymarin Liquisolid in Isoproterenol Prompted Myocardial Infarction in Rats

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is the principal cause of death in many countries. Silymarin (SM) is a herbal antioxidant and can be efficiently used in preventing cardiovascular diseases (CVDs). The study is aimed to enhance the absorption rate and biological activity of SM by using liquisolids besides investigating the cardioprotective activity of SM and its selected liquisolid formula against isoproterenol prompted cardiotoxicity in rats. Eight formulae were prepared according to (23) full-factorial design. The effect of viscosity increasing agent type and concentration, as well as the carrier/coat ratio on the dissolution rate and angle of repose were studied. All formulae were tested for content uniformity, micromeritic properties, dissolution performance besides the evaluation of its physicochemical properties, and scanning electron microscopy (SEM). Based on the factorial design outcomes, the highest desirability was obtained from F3 with excipient ratio value (R) of 20%, dissolution rate at Q5 min of 26.9%, and angle of repose of 19. Oral administration of F3 liquisolid and SM revealed a significant protective efficacy against the modification of cardiac plasma markers, brain natriuretic peptide (BNP), interleukin-10 (IL-10), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β1 besides cardiac superoxide dismutase (SOD), malondialdehyde (MDA), and total protein kinase-1 (Akt-1) levels. Additionally, they minimized cardiac inducible nitric oxide synthase (iNOS), microRNA-34a (miR-34a), and p38 mitogen-activated protein kinase (p38-MAPK) levels. In conclusion, F3 liquisolid compact possessed an overall pronounced results over pure SM reckoned to its enhanced solubility and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yousaf AM, Malik UR, Shahzad Y, Mahmood T, Hussain T. Silymarin-laden PVP-PEG polymeric composite for enhanced aqueous solubility and dissolution rate: preparation and in vitro characterization. J Pharm Anal. 2019;9:34–9.

    PubMed  Google Scholar 

  2. Sornsuvit C, Hongwiset D, Yotsawimonwat S, Toonkum M, Thongsawat S, Taesotikul W. The bioavailability and pharmacokinetics of silymarin SMEDDS formulation study in healthy Thai volunteers. Evid Based Complement Alternat Med. 2018;1–7.

  3. Javed S, Kohli K, Ali M. Reassessing bioavailability of silymarin. Alternative Medicine Rev. 2011;16:239–49.

    Google Scholar 

  4. Taleb A, Ahmad KA, Ihsan AU, Qu J, Lin N, Hezam K, et al. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed Pharmacother. 2018;102:689–98.

    CAS  PubMed  Google Scholar 

  5. Surai PF. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants (Basel). 2015;4(1):204–47.

    CAS  Google Scholar 

  6. Rahimia R, Karimia J, Khodadadia I, Tayebiniaa H, Kheiripourb N, Hashemniac M, et al. Silymarin ameliorates expression of urotensin II (U-II) and its receptor (UTR) and attenuates toxic oxidative stress in the heart of rats with type 2 diabetes. Biomed Pharmacother. 2018;101:244–50.

    Google Scholar 

  7. Chen L, Hu JY, Wang SQ. The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol. 2012;23:231–40.

    Google Scholar 

  8. Alcantara EH, Shin MY, Sohn HY, Park YM, Kim T, Lim JH, et al. Indole alkaloids from Catharanthusroseus: bioproduction and their effect on human health. Molecules. 2015;20:2973–3000.

    Google Scholar 

  9. Eleni T, Kateřina P, Haralambos S, Fragiskos K, Vladimír K. Bioavailability of silymarin flavonolignans: drug formulations and biotransformation. Phytochem Rev. 2014;13:1–18.

    Google Scholar 

  10. Di Costanzo A, Angelico R. Formulation strategies for enhancing the bioavailability of silymarin: the state of the art. Molecules. 2019;24(11):2155.

    PubMed Central  Google Scholar 

  11. Piazzini V, D’Ambrosio M, Luceri C, Cinci L, Landucci E, Bilia AR, et al. Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin. Molecules. 2019;24:1688.

    CAS  PubMed Central  Google Scholar 

  12. Lu M, Ding P. Liquisolid technique and its applications in pharmaceutics. Asian J Pharm Sci. 2017;12:115–23.

    PubMed  Google Scholar 

  13. Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2007;341:26–34.

    CAS  PubMed  Google Scholar 

  14. Soliman SM, Abdel Malak NS, El-Gazayerly ON, Abdel Rehim AA. Formulation of microemulsion gel systems for transdermal delivery of celecoxib: in vitro permeation, anti-inflammatory activity and skin irritation tests. Drug Discov Ther. 2010;4(6):459–71.

    CAS  PubMed  Google Scholar 

  15. Balata GF. Formulation and evaluation of gliclazide in vegetable oil-based self emulsifying delivery system. J App Pharm Sci. 2018;8(09):023–33.

    CAS  Google Scholar 

  16. Sonali D, Tejal S, Vaishali T, Tejal G. Silymarin-solid dispersions: characterization and influence of preparation methods on dissolution. Acta Pharma. 2010;60:427–43.

    CAS  Google Scholar 

  17. Naveen C, Shastri N, Tadikond RR. Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharma Sin B. 2012;2:502–8.

    CAS  Google Scholar 

  18. Swain S, Niranjan C, Bhanoji Rao ME. Pharmaceutical drug delivery systems and vehicles. 1st ed. Woodhead Publishing India: Publisher; 2015.

    Google Scholar 

  19. Pavani E, Noman S, Syed IA. Liquisolid technique based sustained release tablet of trimetazidine dihydrochloride. Drug invention today. 2013;5:302–10.

    CAS  Google Scholar 

  20. Han X, Qi W, Dong W, Guo M, Ma P, Wang J. Preparation, optimization and in vitro–in vivo investigation for capsules of the choline salt of febuxostat. Asian J Pharm Sci. 2016;11:715–21.

    Google Scholar 

  21. Pharmacopoeia B. The stationery office. MD: Rockville; 2012.

    Google Scholar 

  22. Kamel R, Basha M. Preparation and in vitro evaluation of Rutin nanostructured liquisolid delivery system. Bulletin of Faculty of Pharmacy, Cairo University. 2013;51:261–72.

    Google Scholar 

  23. Panda A, Biyani DM. Studies on liquisolid system as a technique to modify the dissolution rate of nifedipine. Am J Pharmtech Res. 2013;3:686–98.

    Google Scholar 

  24. Mahmoud EA, Bendas ER, Mohamed MI. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech. 2009;10:183–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Javadzadeh Y, Siahi MR, Asnaashari S, Nokhodchi A. An investigation of physicochemical properties of piroxicam liquisolid compacts. Pharm Dev Tech. 2008;12:337–43.

    Google Scholar 

  26. Patil JS, Devi VK, Devi K, Sarasija S. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India. 2015;32(4):331–8.

    PubMed  PubMed Central  Google Scholar 

  27. Yang G, Zhao Y, Feng N, Zhang Y, Liu Y, Dang B. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids. Asian J Pharm Sci. 2015;10:194–202.

    Google Scholar 

  28. Reema O, Chandrasekhar S, Chandrakala K. Bio-tea prevents membrane destabilization during isoproterenol-induced myocardial injury. J Microsc Ultrastruct. 2017;5:146–54.

    Google Scholar 

  29. Farah N, Nasim J, Nayma S, Mohammad H. Effects of peanut (Arachis hypogaea L.) and its combination with propranolol in isoproterenol induced myocardial damage in rats. J Bangladesh Soc Physiol. 2016;11:74–9.

    Google Scholar 

  30. Gerhardt W, Waldenström J. Creatine kinase B-subunit activity in serum after immunoinhibition of M-subunit activity. Clin Chem. 1979;25:1274–80.

    CAS  PubMed  Google Scholar 

  31. King J. The dehydrogenase or oxidoreductatse. Lactate dehydrogenase. In: Practical clinical enzymology. London: Nostr. and Co.; 1965.

    Google Scholar 

  32. Nichans WH, Samulelson B. Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem. 1968;6:126–30.

    Google Scholar 

  33. Marklund S, Marklund D. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74.

    CAS  PubMed  Google Scholar 

  34. Hentzschel CM, Sakmann A, Leopold CS. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev Ind Pharm. 2011;37:1200–7.

    CAS  PubMed  Google Scholar 

  35. Jadhav NR, Pharm M, Irny PV, Patil US. Solid state behavior of progesterone and its release from Neusilin US2 based liquisolid compacts. J Drug Deliv Sci Tech. 2017;38:97–106.

    CAS  Google Scholar 

  36. Hill SW, Varker AS, Karlage K, Myrdal PB. Analysis of drug content and weight uniformity for half-tablets of 6 commonly split medications. J Manag Care Pharm. 2009;15(3):253–61.

    PubMed  Google Scholar 

  37. Baranauskaite J, Kopustinskiene DM, Masteikova R, Gajdziok J, Baranauskas A, Bernatoniene J. Effect of liquid vehicles on the enhancement of rosmarinic acid and carvacrol release from oregano extract liquisolid compacts. Colloids Surf A Physicochem Eng Asp. 2018;539:280–90.

    CAS  Google Scholar 

  38. Nokhodchi A, Aliakbar R, Desai S, Javadzadeh Y. Liquisolid compacts: the effect of cosolvent and HPMC on theophylline release. Colloids Surfaces B Biointerfaces. 2010;79:262–9.

    CAS  PubMed  Google Scholar 

  39. Tiong N, Elkordy AA. Effects of liquisolid formulations on dissolution of naproxen. Eur J Pharm Biopharm. 2009;73:373–84.

    CAS  PubMed  Google Scholar 

  40. Tayel SA, Soliman II, Louis D. Improvement of dissolution properties of carbamazepine through application of the liquisolid tablet technique. Eur J Pharm Biopharm. 2008;69:342–7.

    CAS  PubMed  Google Scholar 

  41. Jaipakdee N, Limpongsa E, Sripanidkulchai B, Piyachaturawat P. Preparation of Curcuma comosa tablets using liquisolid techniques: in vitro and in vivo evaluation. Int J Pharm. 2018;553:157–68.

    CAS  PubMed  Google Scholar 

  42. Sharma V, Pathak K. Effect of hydrogen bond formation/replacement on solubility characteristics, gastric permeation and pharmacokinetics of curcumin by application of powder solution technology. Acta Pharma Sin B. 2016;6:600–13.

    Google Scholar 

  43. Spireas S, Wang T, Grover R. Effect of powder substrate on the dissolution properties of methyclothiazide liquisolid compacts. Drug Dev Ind Pharm. 1999;25:163–8.

    CAS  PubMed  Google Scholar 

  44. Komala DR, Janga KY, Jukanti R, Bandari S, Gopa MV. Competence of raloxifene hydrochloride loaded liquisolid compacts for improved dissolution and intestinal permeation. J Drug Deliv Sci Tech. 2015;30:232–41.

    CAS  Google Scholar 

  45. Elkadi S, Elsamaligy S, Al-Suwayeh S, Mahmoud H. The development of self-nanoemulsifying liquisolid tablets to improve the dissolution of simvastatin. AAPS PharmSciTech. 2017;18:2586–97.

    CAS  PubMed  Google Scholar 

  46. Barmpalexis P, Grypioti A, Eleftheriadis GK, Fatouros DG. Development of a new aprepitant liquisolid formulation with the aid of artificial neural networks and genetic programming. AAPS PharmSciTech. 2018;19:741–52.

    CAS  PubMed  Google Scholar 

  47. Varshosaz J, Tavakoli N, Kheirolahi F. Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride. AAPS PharmSciTech. 2006;7(1):E1–7.

    Google Scholar 

  48. Xu H, Liu L, Li X, Ma J, Liu R, Wang S. Extended tacrolimus release via the combination of lipid-based solid dispersion and HPMC hydrogel matrix tablets. Asian J Pharm Sci. 2019;14:445–54.

    PubMed  Google Scholar 

  49. Elkordy AA, Essa EA, Dhuppad S, Jammigumpula P. Liquisolid technique to enhance and to sustain griseofulvin dissolution: effect of choice of non-volatile liquid vehicles. Int J Pharm. 2012;434:122–32.

    CAS  PubMed  Google Scholar 

  50. Ghosh A, Biswas S, Ghosh T. Preparation and evaluation of silymarin b-cyclodextrin molecular inclusion complexes. J Young Pharmacists. 2011;3:205–10.

    CAS  Google Scholar 

  51. Suryawanshi VK, Gidwani B, Verma A, Dubey N, Kaur CD. Formulation and evaluation of ramipril liquisolid compact using novel carrier. Int J Pharm Sci Res. 2019;10:917–25.

    CAS  Google Scholar 

  52. Noor AD, Al-Khedairy EBH. Formulation and evaluation of silymarin as microcrystals by in- situ micronization technique. Iraqi J Pharm Sci. 2019;28(1):1–16.

    Google Scholar 

  53. Lian R, Lu Y, Qi J, Tan Y, Niu M, Guan P, et al. Silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices: physical characterization and enhanced oral bioavailability. AAPS PharmSciTech. 2011;12:1234–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Morazzoni P, Bombardelli E. Silybum marianum (Carduus marianus). Fitoterapia. 1995;66:3–42.

    CAS  Google Scholar 

  55. Haková H, Misúrová E, Kropácová K. The effect of silymarin on concentration and total content of nucleic acids in tissues of continuously irradiated rats. Vet Med (Praha). 1996;41:113–9.

    Google Scholar 

  56. Kang JS, Jeon YJ, Park SK, Yang KH, Kim HM. Protection against lipopolysaccharide-induced sepsis and inhibition of interleukin-1beta and prostaglandin E2 synthesis by silymarin. Biochem Pharmacol. 2004;67:175–81.

    CAS  PubMed  Google Scholar 

  57. Wang Q, Zou L, Liu W, Hao W, Tashiro S, Onodera S, et al. Inhibiting NF-κB activation and ROS production are involved in the mechanism of silibinin’s protection against d-galactose-induced senescence. Pharmacol Biochem Behav. 2011;98:140–9.

    CAS  PubMed  Google Scholar 

  58. Prabu SM, Muthumani M. Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol Biol Rep. 2012;39:11201–16.

    CAS  PubMed  Google Scholar 

  59. Wang C, Wang Z, Zhang X, Zhang X, Dong L, Xing Y, et al. Protection by silibinin against experimental ischemic stroke: up-regulated pAkt, pmTOR, HIF-1α and Bcl-2, down-regulated Bax, NF-κB expression. Neurosci Lett. 2012;529:45–50.

    CAS  PubMed  Google Scholar 

  60. Liu BN, Hanm BX, Liu F. Neuroprotective effect of pAkt and HIF-1 α on ischemia rats. Asian Pac J Trop Med. 2014;7:221–5.

    CAS  PubMed  Google Scholar 

  61. Aristatile B, Al-Assaf AH, Pugalendi KV. Carvacrol suppresses the expression of inflammatory marker genes in d-galactosamine-hepatotoxic rats. Asian Pac J Trop Med. 2013;6:205–11.

    CAS  PubMed  Google Scholar 

  62. Perrelli MG, Pagliaro P, Penna C. Ischemia/ reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol. 2011;3:186–200.

    PubMed  PubMed Central  Google Scholar 

  63. Zhou B, Wu LJ, Tashiro S, Onodera S, Uchiumi F, Ikejima T. Silibinin protects rat cardiac myocyte from isoproterenol-induced DNA damage independent on regulation of cell cycle. Biol Pharm Bull. 2006;29:1900–5.

    CAS  PubMed  Google Scholar 

  64. Rolo AP, Oliveira PJ, Moreno AJ, Palmeira CM. Protection against post-ischemic mitochondrial injury in rat liver by silymarin or TUDC. Hepatol Res. 2003;26:217–24.

    CAS  PubMed  Google Scholar 

  65. Detaille D, Sanchez C, Sanz N, Lopez-Novoa JM, Leverve X, El-Mir MY. Interrelation between the inhibition of glycolytic flux by silibinin and the lowering of mitochondrial ROS production in perifused rat hepatocytes. Life Sci. 2008;82:1070–6.

    CAS  PubMed  Google Scholar 

  66. Owona BA, Njayou NF, Laufer SA, Schluesener HJ, Moundipa PF. Entada africana fraction CH(2)cl(2)/MEOH 5% inhibits inducible nitric oxide synthase and pro-inflammatory cytokines gene expression induced by lipopolysaccharide in microglia. BMC Complement Altern Med. 2013;13:254.

    PubMed  PubMed Central  Google Scholar 

  67. Zeng L, Tang WJ, Yin JJ, Zhou BJ. Signal transductions and nonalcoholic fatty liver: a mini-review. Int J Clin Exper Med. 2014;7:1624–31.

    Google Scholar 

  68. Luo C, Yang H, Tang C. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. Int Immunopharmacol. 2015;28:744–50.

    CAS  PubMed  Google Scholar 

  69. Cordero-Herrera I, Martin MA, Goya L, Ramos S. Cocoa flavonoids protect hepatic cells against high-glucose-induced oxidative stress: relevance of MAPKs. Mol Nutr Food Res. 2015;59:597–609.

    CAS  PubMed  Google Scholar 

  70. Xu ZR, Li JY, Dong XW. Apple polyphenols decrease atherosclerosis and hepatic steatosis in ApoE−/− mice through the ROS/MAPK/NF-κB pathway. Nutrients. 2015;7:7085–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Usta E, Mustafi M, Walker T, Ziemer G. Resveratrol suppresses apoptosis in intact human cardiac tissue - in vitro model simulating extracorporeal circulation. J Cardiovasc Surg. 2011;52:399–409.

    CAS  Google Scholar 

  72. Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J. 2007;28:766–72.

    PubMed  Google Scholar 

  73. Huang Z, Wu S, Kong F, Cai X, Ye B. MicroRNA-21 protects against cardiac hypoxia/ reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med. 2017;21:467–74.

    CAS  PubMed  Google Scholar 

  74. Shao H, Yang L, Wang L, Tang B, Wang J. MicroRNA-34a protect myocardial cells against ischemiareperfusion injury through inhibiting autophagy via regu- lating TNF-α expression. Biochem Cell Biol. 2018;96:349–54.

    CAS  PubMed  Google Scholar 

  75. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18:457–68.

    CAS  PubMed  Google Scholar 

  76. Lee YC, Cheng TH, Lee JS, Chen JH, Liao YC, Fong Y, et al. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells. Mol Cell Biochem. 2011;347:103–15.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin M. Sheta.

Ethics declarations

All procedures were performed in accordance with guidelines established by the animal care and use approved by research ethical committee of O6U, Faculty of Pharmacy, Egypt.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheta, N.M., Elfeky, Y.A. & Boshra, S.A. Cardioprotective Efficacy of Silymarin Liquisolid in Isoproterenol Prompted Myocardial Infarction in Rats. AAPS PharmSciTech 21, 81 (2020). https://doi.org/10.1208/s12249-019-1609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1609-3

KEY WORDS

Navigation