Skip to main content
Log in

Levels of lipid peroxidation, superoxide dismutase, and Na+/K+ ATPase in some tissues of rats exposed to a Nigerian-like diet and cadmium

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of the present study was to examine the role of a wholly compounded Nigerian-like diet on the activities of superoxide dismutase (SOD) and Na+/K+ ATPase and level of lipid peroxidation in oral cadmium toxicity. Nine-week-old Wistar albino rats (100±2.0 g) were exposed to 100 ppm cadmium in drinking water and the Nigerian-like diet (low in protein and high in carbohydrates and fiber) for 16 wk. The results obtained indicate that cadmium reduced weight gain and increased fecal output of rats, which was further potentiated by the Nigerian-like diet. Cadmium was concentrated in the intestine, liver, and kidney, with the highest level observed in the kidney, followed by the liver. The Nigerian-like diet reduced the concentration of cadmium in these tissues. Cadmium increased lipid peroxidation and inhibited SOD and Na+/K+ ATPase in the tissues. These were also aggravated in rats fed the Nigerian-like diet. Because the Nigerian-like diet increased lipid peroxidation and inhibited SOD and Na+/K+ ATPase in the tissue, it rendered rats more susceptible to cadmium toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bernard and R. Lauwerys, Cadmium in human populations, Experiential 40, 143–150 (1984).

    Article  CAS  Google Scholar 

  2. B. Elsenhans, K. Schumann, and W. Forth, Toxic metals: interactions with essential metals, in Nutrition, Toxicity, and Cancer, I. R Rowland, ed., CRC, Boca, Raton, FL, pp. 223–258 (1991).

    Google Scholar 

  3. P. G. Reeves and R. L. Chaney, Mineral status of female rats affects the absorption and organ distribution of dietary cadmium derived from edible sunflower kernels (Helianthus annus L), Environ. Res. 85, 215–225 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. M. Berglund, A. Akesson, B. Nermell, et al., Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake, Environ. Health Perspect. 102, 1058–1066 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. Y. Lind, J. Engman, L. Jorhem, et al., Accumulation of cadmium from wheat bran, sugar-beet fibre, carrots ad cadmium chloride in the liver and kidneys of mice, Br J. Nutr. 205, 11 (1998).

    Google Scholar 

  6. M. R. S. Fox, Nutritional influences on metal toxicity: cadmium as a model toxic element. Environ. Health Perspect. 29, 95–104 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. N. W. Revis, The relationship of dietary protein to matallothionein and cadmium induced renal damage. Toxicology. 20, 323–333 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. P. C Tewari, V. K. Jain, M. Ashquin et al., Influence of protein deficiency on cadmium toxicity in rats. Arch. Environ. Contam. Toxicol. 15, 409–415 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. S. Gupta, M. Athar, J. R. Behari, et al., Cadmium mediated induction of cellular defence mechanism: a novel example for the development of adaptive response against a toxicant, Ind. Health 29, 1–9 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. D. Baghi, M. Bagchi, E. A. Hassoun, et al., Cadmium induced excretion of urinary lipid metabolites, DNA damage, glutathione depletion and hepatic lipid peroxidation in Sprage-Dawley rats, Biol. Trace Element Res. 52, 143–154 (1996).

    Google Scholar 

  11. J. A. Timbrell, Principles of Biochemistry Toxicology, 2nd ed., J Wiley, New York (1991).

    Google Scholar 

  12. A. B. M. Egborge, Water pollution in Nigeria, in Biodiversity and Chemistry of Warri River, Ben Miller Books Nigeria, Warri, Nigeria (1994).

    Google Scholar 

  13. G. E. Eriyamremu, V. E. Osagie, M. Amata, et al., Effect of wholly compounded Nigerian diets on the biological utilization of melon and fish oils, Biores. Commun. 7, 137–142 (1995).

    Google Scholar 

  14. H. P. Misra and I. Fridovich, The role of superoxide ion in the autooxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 247, 3170–3175 (1972).

    PubMed  CAS  Google Scholar 

  15. V. Adam-Vizi and M. Seregi, Receptor dependent stimulatory effect of noradrenaline on Na+/K+ ATPase in rat brain homogenate. Role of lipid peroxidation, Biochem. Pharmacol. 31, 2231–2236 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. C. H. Fiske and Y. Subarrow, The colorimetric determination of phosphorus, J. Biol. Chem. 66, 375–400 (1925).

    CAS  Google Scholar 

  17. O. H. Lowry, N. J. Rosebrough, A. L. Farr, et al., Protein measurement with the Folin-Phenol reagent, J. Biol. Chem. 193, 256–275 (1951).

    Google Scholar 

  18. J. M. C. Gutteridge and S. Wilkins, Copper-dependent hydroxyl radical damage to ascorbic acid, FEBS Lett. 137, 327–329 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. R. R. Sokal and F. U. Rohlf, The Principles and Practice of Statistics in Biological Research, Freeman, San Francisco, pp. 469, 469–484 (1969).

    Google Scholar 

  20. D. Kritchevsky, Dietary fibre, Annu. Rev. Nutr. 8, 301–328 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. S. Kritchevsky, S. A. Tepper, S. Satchithanandam, et al., Dietary fibre supplements: effects on serum and liver lipids and on liver phospholipids composition in rats, Lipids 23, 318–321 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. H. Horiguchi, M. Sato, N. Konno, et al., Long term cadmium exposure induces anaemia in rats through hypoinduction of erythropoietin in the kidney, Arch. Toxicol. 71, 11–19 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. S. O. Asagba, G. K. Isamah, E. K. Ossai, et al., Effect of oral exposure to cadmium on the levels of vitamin A and lipid peroxidation in the eye, Bull. Environ. Contam. Toxicol. 68, 18–21 (2002).

    PubMed  CAS  Google Scholar 

  24. B. Elsenhans, G. Strugala, and K. Schmann, Longitudinal pattern of enzymatic and absorptive functions in the small intestine of rats after short term exposure to dietary cadmium chloride, Arch. Environ. Contam. Toxicol. 36, 341–346 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. D. P. Burkitt, Etiology and prevention of colorectal cancer, Hospital Practice 19, 67–77 (1984).

    PubMed  CAS  Google Scholar 

  26. B. Elsenhans, G. J. Strugala, and S. G. Schafar, Small intestine absorption of cadmium and the significance of mucosal metallothionein, Hum. Exp. Toxicol. 16, 429–434 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. M. Taniguchi and M. G. Cherian, Ontogenic changes in hepatic glutathione and metal-lothionein in rats and the effect of a low sulfur containing diet, Br. J. Nutr. 63(1), 97–103 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. M. M. Tatli, H. Vural, A. Koc, et al., Altered antioxidant status and increased lipid peroxidation in marasmic children. Pediatr. Int. 42, 289–292 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. WHO, Environmental Health Criteria, 134, Cadmium, World Health Organisation, Geneva, pp. 111–112 (1992).

    Google Scholar 

  30. M. E. Gotz, G. Kunig, P. Riederer, et al., M. B. H. Youdim, Oxidative stress: free radical production in neural degeneration, Pharm. Therap. 63, 37–122 (1994).

    Article  CAS  Google Scholar 

  31. S. Sarker, P. Yadar, and D. Bhatnagar, Cadmium induced lipid peroxidation and the antioxidant system in rat erythrocyte: The role of antioxidants, J. Trace Elements Med. Biol. 11, 8–13 (1997).

    Google Scholar 

  32. R. C. Patra, D. Swarup, and S. K. Senapati, Effects of cadmium on lipid peroxides and superoxide dismutase in hepatic, renal and testicular tissue of rats. Vet. Hum. Toxicol. 41, 65–66 (1999).

    PubMed  CAS  Google Scholar 

  33. A. G. Allen, H. A. El-Hag, O. C. MacDonald, et al., The lymphocyte response of cadmium to sheep red blood cells (SRBC) and Nippostrgylus brasillensis antigens, Nutr. Rep. Int. 40, 1217–1226 (1980).

    Google Scholar 

  34. S. A. Lettre, Cadmium and Plant Growth, Freeman, San Francisco, pp. 74–194.

  35. P. F. Bauman, T. K. Smith, and T. M. Bray, The effect of dietary protein and sulfur amino acids on hepatic glutathione concentration and glutathione dependent enzyme activities in the rat, Can. J. Physiol. Pharmacol. 66(8), 1048–1052 (1988).

    PubMed  CAS  Google Scholar 

  36. C. D. Klaassen and J. Liu, Induction of metallothionein as an adaptive mechanism affecting the magnitude and progression of toxicological injury, Environ. Health Perspect. 106, 1–8 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asagba, S.O., Eriyamremu, G.E., Adaikpoh, M.A. et al. Levels of lipid peroxidation, superoxide dismutase, and Na+/K+ ATPase in some tissues of rats exposed to a Nigerian-like diet and cadmium. Biol Trace Elem Res 100, 75–86 (2004). https://doi.org/10.1385/BTER:100:1:075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:100:1:075

Index Entries

Navigation