Skip to main content
Log in

Mechanosensitive channel of Thermoplasma, the cell wall-less archaea

Cloning and molecular characterization

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

By using a functional approach of reconstituting detergent-solubilized membrane proteins into liposomes and following their function in patch-clamp experiments, we identified a novel mechanosensitive (MS) channel in the thermophilic cell wall-less archaeon Thermoplasma volcanium. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the enriched protein fractions revealed a band of approx 15 kDa comparable to MscL, the bacterial MS channel of large conductance. 20 N-terminal residues determined by protein microsequencing, matched the sequence to an unknown open reading frame in the genome of a related species Thermoplasma acidophilum. The protein encoded by the T. acidophilum gene was cloned and expressed in Escherichia coli and reconstituted into liposomes. When examined for function, the reconstituted protein exhibited properties typical of an MS ion channel: 1) activation by negative pressure applied to the patch-clamp pipet, 2) blockage by gadolinium, and 3) activation by the anionic amphipath trinitrophenol. In analogy to the nomenclature used for bacterial MS channels, the MS channel of T. acidophilum was termed MscTA. Secondary structural analysis indicated that similar to MscL, the T. acidophilum MS protein may have two transmembrane domains, suggesting that MS channels of thermophilic Archaea belong to a family of structurally related MscL-like ion channels with two membrane-spanning regions. When the mscTA gene was expressed in the mscL knockout strain and the MscTA protein reconstituted into liposomes, the gating of MscTA was charaterized by very brief openings of variable conductance. In contrast, when the mscTA gene was expressed in the wild-type mscL + strain of E. coli, the gating properties of the channel resembled MscL. However, the channel had reduced conductance and differed from MscL in its kinetics and in the free energy of activation, suggesting that MscTA and MscL can form functional complexes and/or modulate each other activity. Similar to MscL, MscTA exhibited an increase in activity in liposomes made of phospholipids having shorter acyl chain, suggesting a role of hydrophobic mismatch in the function of prokaryotic MS channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinac, B. (1993) Mechanosensitive ion channels: biophysics and physiology in Thermodynamics of Membrane Receptors and Channels Jackson, M. B., ed.) CRC Press, Boca Raton, pp. 327–351.

    Google Scholar 

  2. Sackin, H. (1995) Mechanosensitive channels. Annu. Rev. Physiol. 57, 333–353.

    PubMed  CAS  Google Scholar 

  3. Hamill, O. P. and McBride, D. W. Jr. (1996) The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48, 231–252.

    PubMed  CAS  Google Scholar 

  4. Sachs, F. and Morris, C. (1998) Mechanosensitive ion channels in non specialised cells, in Revies of Physiology, Biochemistry and Pharmacology (Blausetein, M. P., Greger, R., Grunicke, H., Jahn, R., Mendell, L. M., Miyajima, A., et al., eds.), Springer Verlag, Berlin, pp. 1–78.

    Google Scholar 

  5. Woese, C. R. (1994) There must be a prokaryote somewhere: microbiology's search for itself. Microbiol. Rev. 58, 1–9.

    PubMed  CAS  Google Scholar 

  6. Stein, J. L. and M. I. Simon, (1996) Archael ubiqity. Proc. Natl. Acad. Sci. USA 93, 6228–6230.

    Article  PubMed  CAS  Google Scholar 

  7. Pace, N. R. (1997) A molecular view of microbial diversity and the biosphere. Science 276, 734–740.

    Article  PubMed  CAS  Google Scholar 

  8. Barinaga, M. (1994) Molecular evolution. Archaea and eukaryotes grow closer. Science 264, 1251.

    Article  PubMed  CAS  Google Scholar 

  9. Le Dain, A. C., Saint, N., Kloda, Ghazi, A., and Martinac, B. (1998) Mechanosensitive ion channels of the archaeon Haloferax volcanii. J. Biol. Chem. 273, 12,116–12,119.

    Article  Google Scholar 

  10. Kloda, A. and Martinac, B. (2001) Molecular cloning of a mechanosensitive ion channel in. Archaea. Biophys. J. 80, 229–240.

    CAS  Google Scholar 

  11. Garcia-Añovernos, J. and Corey, D. P. (1997) The molecules of mechanosensation. Ann. Rev. Neurosci. 30, 567–594.

    Article  Google Scholar 

  12. Martinac, B. (1999) Mechanosensitive ion channels: universal biological transducers of mechanical stimuli. Australian Biochemist 8(3), 6–10.

    Google Scholar 

  13. Sukharev, S. I., Blount, P., Martinac, B., and Kung, C. (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657.

    Article  PubMed  CAS  Google Scholar 

  14. Oakley, A., Martinac, B., and Wilce, M. (1999) Structure and function of the bacterial mechanosensitive channel of large conductance. Protein Sci. 8, 1915–1921.

    PubMed  CAS  Google Scholar 

  15. Patel, A., Honoré, E., Maingret, F., Lesage, F., Fink, M., Duprat, F., and Lazdunski, M. (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 17, 4283–4290

    Article  PubMed  CAS  Google Scholar 

  16. Delcour, A. H., Martinac, B., Adler, J., and Kung, C. (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56, 631–636.

    PubMed  CAS  Google Scholar 

  17. Häse, C. C., LeDain, A. C., and Martinac, B. (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J. Biol. Chem. 270, 18,329–18,334.

    Google Scholar 

  18. Ruepp, A., Graml, W., Santos-Martinez, M.-L., et al. (2000) The genome sequence of the thermoacidophilic scavenger thermoplasma acidophilum. Nature 407, 508–513.

    Article  PubMed  CAS  Google Scholar 

  19. Martinac, B., Buechner, M., Delcour, M., Adler, J., and Kung, C. (1987) Pressure-sensitive ion channels in Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 2297–2301.

    Article  PubMed  CAS  Google Scholar 

  20. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R., and Kung, C. (1994a) A large mechanosensitive channel in E. coli encoded by mscL alone. Nature 268, 265–268.

    Article  Google Scholar 

  21. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. Eur. J. Physiol. 391, 85–100.

    Article  CAS  Google Scholar 

  22. Sukharev, S. I., Martinac, B., Blount, P., and Kung, C. (1994b) Functional reconstitution as an assay for biochemical isolation of channel proteins: applications to the molecular identification of a bacterial mechanosensitive channel. Methods Enzymol. 6, 51–59.

    Article  CAS  Google Scholar 

  23. Martinac, B., Adler, J., and Kung, C. (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348, 261–263.

    Article  PubMed  CAS  Google Scholar 

  24. Sokabe, M., Hasegawa, N., and Yamamori, K. (1993) Blockers activators for stretch-activated ion channels of chick skeletal muscle. NY Acad. Sci. 707, 417–420.

    Article  CAS  Google Scholar 

  25. Searcy, D. G. and Whatley, F. R. (1982) Thermoplasma acidophilum cell membrane: cytochrome b and sulfate-stimulated ATPAse. Zbl. Bakt. Hyg., I. Abt. Orig. C3, 245–257.

    CAS  Google Scholar 

  26. Moe, P. C., Blount, P., and Kung, C. (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol. Microbiol. 28(3), 583–592.

    Article  PubMed  CAS  Google Scholar 

  27. Harroun, T. A., Heller, W. T., Weiss, T. M., Yang, L., and Huang, H. W. (1999) Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys. J. 76, 937–945, 1999.

    PubMed  CAS  Google Scholar 

  28. Nielsen, C., Goulian, M., and Andersen, O. S. (1998) Energetics of inclusion-induced bilayer deformations. Biophys. J. 74, 1966–1983.

    PubMed  CAS  Google Scholar 

  29. Berrier, C., Coulombe, A., Szabo, I., Zoratti, M., and Ghazi, A. (1992) Gadolinium ion inhibits loss of metabolites induced by osmotic down-shock, and large stretch activated channels in bacteria. Eur. J. Biochem. 206, 559–565.

    Article  PubMed  CAS  Google Scholar 

  30. Berrier, C., Besnard, M., Ajouz, B., Coulombe, A., and Ghazi, A. (1996). Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Membrane Biol. 151, 175–187.

    Article  CAS  Google Scholar 

  31. Kumar, S., Tsai, C. J., and Nussinov, R. (2000). Factors enhancing protein thermostability. Prot. Eng. 13(13), 179–191.

    CAS  Google Scholar 

  32. Henderson, R. and Unwin, P. N. T. (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32.

    Article  PubMed  CAS  Google Scholar 

  33. North, R. A. (1996) Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 8, 474–483.

    Article  PubMed  CAS  Google Scholar 

  34. Chang, G., Spencer, R., Lee, A., Barclay, M., and Rees, D. (1998) Structure of the MscL homologue from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226.

    Article  PubMed  CAS  Google Scholar 

  35. Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P. and Darnell, J. (1995) Molecular Cell Biology, 3rd ed, Scientific American Books, New York, p. 607.

    Google Scholar 

  36. Sukharev, S. I., Martinac, B., Arshavsky, V. Y., and Kung, C. (1993) Two types of mechanosensitive channels in the E. coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65, 177–183.

    PubMed  CAS  Google Scholar 

  37. Häse, C. C., LeDain, A. C., and Martinac, B. (1997b) Molecular dissection of the large mechanosensitive ion channel (MscL) of E. coli: mutants with altered channel gating and pressure sensitivity. J. Membr. Biol. 157, 17–25.

    Article  PubMed  Google Scholar 

  38. Saint, N., Lacapere, J. J., Gu, L. Q., Ghazi, A., Martinac, B., and Rigaud, J. L. (1998) A hexameric transmembrane pore revealed by two-dimensional crystallization of the large mechanosensitive ion channel (MscL) of Escherichia coli. J. Biol. Chem. 273, 14,667–14,670.

    Article  CAS  Google Scholar 

  39. Gazit, E., Bach, D., Kerr, I. D., Sansom, M. S., Chejanovsky, N., and Shai, Y. (1994) The alpha-5 segment of Bacillus thuringiensis delta-endotoxin: in vitro activity, ion channel formation and molecular modeling. Biochemi. J. 304(3), 895–902.

    CAS  Google Scholar 

  40. Kerr, I. D., Sankararamakrishnan, R., Smart, O. S., and Sansom, M. S. (1994) Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys. J. 67(4), 1501–1515.

    PubMed  CAS  Google Scholar 

  41. Sansom, M. S., Kerr, I. D., Smith, G. R., and Son, H. S. (1997) The influenza A virus M2 channel: a molecular modeling and simulation study. Virology 233(1), 163–173.

    Article  PubMed  CAS  Google Scholar 

  42. Malashkevich, V. N., Kammerer, R. A., Efimov, V. P., Schulthess, T., and Engel, J. (1996) The crystal structure of a five-stranded coiled coil in COMP: a prototype ion channel? Science 274, 761–765.

    Article  PubMed  CAS  Google Scholar 

  43. Zubay, G. (1993) Biochemistry, 3rd ed. Wm C. Brown Publishers; Dubuque, IAP, 73.

    Google Scholar 

  44. Reithmeier, R. A. F. and Deber, C. M. (1992) Intrinsic membrane protein structure: principle and prediction, in The Structure of Biological Membranes Yeagle, P, ed. CRC Press, Boca Raton, pp. 337–393.

    Google Scholar 

  45. Gullingsrud, J., Kosztin, D., and Schulten K. (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys. J. 80, 2074–2081.

    Article  PubMed  CAS  Google Scholar 

  46. Hamill, O. and Martinac, B. (2001) Molecular basis of mechanotransduction in living cells: from simple peptides in bilayers to mechanosensitive channels, enzyme and transmitter release. Physiolog. Rev. 81(2), 685–740.

    CAS  Google Scholar 

  47. Lewis, B. A. and Engelman, D. M. (1983) Lipid bilayer thickness varies linealy with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217.

    Article  PubMed  CAS  Google Scholar 

  48. Langworthy, T. A. (1982) Lipids of thermoplasma. Methods Enzymol. 88, 396–406.

    Article  CAS  Google Scholar 

  49. Sukharev, S. I., Sigurdson, W. J., Kung, C., and Sachs, F. (1999b) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113, 525–539.

    Article  PubMed  CAS  Google Scholar 

  50. Howard, J., Roberts, W. M., and Hudspeth, A. J. (1988) Mechanoelectrical transduction by hair cells. Annu. Rev. Biophys. Chem. 17, 99–124.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Martinac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloda, A., Martinac, B. Mechanosensitive channel of Thermoplasma, the cell wall-less archaea. Cell Biochem Biophys 34, 321–347 (2001). https://doi.org/10.1385/CBB:34:3:321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:34:3:321

Index Entries

Navigation