Skip to main content
Log in

Plasmalemmal vacuolar-type H+-ATPase in cancer biology

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Vacuolar-type H+-adenosine triphosphatase (V-ATPase) is one of the most fundamental enzymes in nature. V-ATPases are responsible for the regulation of proton concentration in the intracellular acidic compartments. It has similar structure with the mitochondrial F0F1-ATP synthase (F-ATPase). The V-ATPases are composed of multiple subunits and have various physiological functions, including membrane and organelle protein sorting, neurotransmitter uptake, cellular degradative processes, and cytosolic pH regulation. The V-ATPases have been involved in multidrug resistance. Recently, plasma membrane V-ATPases have been involved in regulation of extracellular acidity, essential for cellular invasiveness and proliferation in tumor metastasis. The current knowledge regarding the structure and function of V-ATPase and its role in cancer biology is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mellman, I., Fuchs, R., and Helenius, A. (1986) Acidification of the endocytic and exocytic pathway. Ann. Rev. Biochem. 55, 663–700.

    PubMed  CAS  Google Scholar 

  2. Nelson, N. (2003) A journey from mammals to yeast with vacuolar H+-ATPase (V-ATPase). J. Bioenerg. Biomembr. 35, 281–289.

    PubMed  CAS  Google Scholar 

  3. Wieczorek, H., Brown, D., Grinstein, S., Ehrenfeld, J., and Harvey, W. R. (1999) Energization of animal plasma membranes by proton-motive V-ATPase. Bioassays 21, 637–648.

    CAS  Google Scholar 

  4. Anraku, Y., Umemoto, N., Hirata, R., and Wada, Y. (1989) Structure and function of the yeast vacuolar membrane proton ATPase. J. Bioenerg. Biomembr. 21, 589–603.

    PubMed  CAS  Google Scholar 

  5. Futai, M., Oka, T., Moriyama, Y., and Wada, Y. (1998) Diverse roles of single membrane organelles: factors establishing the acid luminal pH. J. Biochem. 124, 259–267.

    PubMed  CAS  Google Scholar 

  6. Nelson, N. (1992) Structural conservation and functional diversity of V-ATPases. J. Bioenerg. Biomembr. 24, 407–414.

    PubMed  CAS  Google Scholar 

  7. Nelson, N. and Harvey, W. R. (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol. Rev. 7, 361–385.

    Google Scholar 

  8. Stevens, T. H. and Forgac, M. (1997) Structure, function and regulation of the vacuolar H+-ATPase. Annu. Rev. Cell Dev. Biol. 13, 779–808.

    PubMed  CAS  Google Scholar 

  9. Cross, R. L. (2000) The rotary binding change mechanism of ATP synthases. Biochim. Biophys. Acta 1458, 270–275.

    PubMed  CAS  Google Scholar 

  10. Weber, J. and Senior, A. E. (2000) ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. Biochim. Biophys. Acta 1458, 300–309.

    PubMed  CAS  Google Scholar 

  11. Fillingame, R. H., Jiang, W., and Dmitriev, O. Y. (2000) Coupling H+ transport to rotary catalysis in F-type ATP synthases. J. Exp. Biol. 203, 9–17.

    PubMed  CAS  Google Scholar 

  12. Forgac, M. (1999) Structure and properties of the vacuolar (H+)-ATPases. J. Biol. Chem. 274, 12951–12954.

    PubMed  CAS  Google Scholar 

  13. Finbow, M. E. and Harrison, M. A. (1997) The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem. J. 324, 697–712.

    PubMed  CAS  Google Scholar 

  14. Bowman, E. J. and Bowman, B. J. (2000) Cellular role of the V-ATPases in Neurospora crassa. J. Exp. Biol. 203, 97–106.

    PubMed  CAS  Google Scholar 

  15. Nishi, T. and Forgac M. (2002) The vacuolar (H+)-ATPase—nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94–103.

    PubMed  CAS  Google Scholar 

  16. Xu, T., Vasilyeva, E., and Forgac, M. (1999) Subunit interactions in the clathrin-coated vesicle V-ATPase complex. J. Biol. Chem. 274, 28909–28915.

    PubMed  CAS  Google Scholar 

  17. Powell, B., Graham, L. A., and Stevens, T. H. (2000) Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J. Biol. Chem. 275, 23654–23660.

    PubMed  CAS  Google Scholar 

  18. Bowman, B. J., Vazquez-Laslop, N., and Bowman, E. J. (1992) The vacuolar ATPase of Neurospora crassa. J. Bioenerg. Biomembr. 24, 361–370.

    PubMed  CAS  Google Scholar 

  19. Graham, L. A., Hill, K. J., and Stevens, T. H. (1995) VMA8 encodes a 32 kDa V1 subunit of Saccharomyces cerevisiae vacuolar H+-ATPase required for functions and assembly of the enzyme complex. J. Biol. Chem. 270, 15037–15044.

    PubMed  CAS  Google Scholar 

  20. Nelson, H., Mandian, S., and Nelson, N. (1995) A bovine cDNA and yeast gene (VMA8) encoding the subunit D of vacuolar H+-ATPase. Proc. Natl. Acad. Sci. USA 92, 497–501.

    PubMed  CAS  Google Scholar 

  21. Perin, M. S., Fried, V. A., Stone, D. K., Xie, X. S., and Sudhof, T. C. (1991) Structure of the 116-kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. J. Biol. Chem. 266, 3877–3881.

    PubMed  CAS  Google Scholar 

  22. Leng, X. H., Manolson, M., Liu, Q., and Forgac, M. (1996) Site-directed mutagenesis of the 100 kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. J. Biol. Chem. 271, 22487–22493.

    PubMed  CAS  Google Scholar 

  23. Leng, X. H., Manolson, M., and Forgac, M. (1998) Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase. J. Biol. Chem. 273, 6717–6723.

    PubMed  CAS  Google Scholar 

  24. Vik, S. B. and Antonio, B. J. (1994) A mechanism of proton translocation by F1F0-ATP synthases suggested by double mutants of the a subunit. J. Biol. Chem. 269, 30364–30369.

    PubMed  CAS  Google Scholar 

  25. Junge, W., Lill, H., and Engelbrecht, S. (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biol. Sci. 22, 420–423.

    CAS  Google Scholar 

  26. Zhang, V. J., Feng, Y., and Forgac, M. (1994) Proton conduction and bafilomycin binding by the domain of the coated vesicle V-ATPase. J. Biol. Chem. 269, 23518–23523.

    PubMed  CAS  Google Scholar 

  27. Bowman, B. J. and Bowman, E. J. (2002) Mutations in subunit c of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J. Biol. Chem. 277, 3965–3972.

    PubMed  CAS  Google Scholar 

  28. Huss, M., Ingenhorst, G., Konig, S., Gassel, M., Drose, S., Zeeck, A., et al. (2002) Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c. J. Biol. Chem. 277, 40544–40548.

    PubMed  CAS  Google Scholar 

  29. Fillingame, R. H. (1997) Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine. J. Exp. Biol. 200, 217–224.

    PubMed  CAS  Google Scholar 

  30. Adachi, I., Puopolo, K., Marquez-Sterling, N., Arai, H., and Forgac, M. (1990) Dissociation, cross-linking, and glycosylation of the coated vesicle proton pump. J. Biol. Chem. 265, 967–973.

    PubMed  CAS  Google Scholar 

  31. Forgac, M. (1998) Structure, function and regulation of the vacuolar H+-ATPase. FEBS Letters 440, 258–263.

    PubMed  CAS  Google Scholar 

  32. Nelson, N. (1989) Structure, molecular genetics and evolution of vacuolar H+-ATPases. J. Bioenerg. Biomembr. 21, 553–571.

    PubMed  CAS  Google Scholar 

  33. Nelson, N. (1992) The vacuolar H+-ATPase—One of the most fundamental ion pumps in nature. J. Exp. Biol. 172, 19–27.

    PubMed  CAS  Google Scholar 

  34. MacLeod, K. J., Vasilyeva, E., Merdek, K., Vogel, P. D., and Forgac, M. (1999) Photoaffinity labeling of wild-type and mutant forms of the yeast V-ATPase A subunit by 2-azido-[32P]-ADP. J. Biol. Chem. 274, 32869–32874.

    PubMed  CAS  Google Scholar 

  35. Arata, Y., Nishi, T., Kawasaki-Nishi, S., Shao, E., Wilkens, S., and Forgac, M. (2002) Structure, subunit function and regulation of the coated vesicle and yeast vacuolar H+-ATPases. Biochim Biophys Acta. 1555, 71–4.

    PubMed  CAS  Google Scholar 

  36. Bowman, E. J., Tenney, K., and Bowman, B. J. (1988) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J. Biol. Chem. 263, 13994–14001.

    PubMed  CAS  Google Scholar 

  37. Hirata, R., Ohsumk, Y., Nakano, A., Kawasaki, H., Suzuki, K., and Anraku, Y. (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol Chem. 265, 6726–6733.

    PubMed  CAS  Google Scholar 

  38. Puopolo, K., Kumamoto, C., Adachi, I., and Forgac, M. (1991) A single gene encodes the catalytic “A” subunit of the bovine vacuolar H(+)-ATPase. J. Biol. Chem. 266, 24564–24572.

    PubMed  CAS  Google Scholar 

  39. Shao, E., Nishi, T., Kawasaki-Nishi, S., and Forgac, M. (2003) Mutational analysis of the non-homologous region of subunit A of the yeast V-ATPase. J Biol Chem. 278, 12985–12991.

    PubMed  CAS  Google Scholar 

  40. Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H., and Taiz, L. (1988) The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the beta-chain of 0F1-ATPases. J. Biol. Chem. 263, 9102–9112.

    PubMed  CAS  Google Scholar 

  41. Xu, T. and Forgac, M. (2000) Subunit D (Vma8p) of the yeast vacuolar (H+)-ATPase plays a role in coupling of proton transport and ATP hydrolysis. J. Biol. Chem. 275, 22075–22081.

    PubMed  CAS  Google Scholar 

  42. Doherty, R. D. and Kane, P. M. (1993) Partial assembly of the yeast vacuolar H+-ATPase in mutants laking one subunit of the enzyme. J. Biol. Chem. 268, 16845–16851.

    PubMed  CAS  Google Scholar 

  43. Ho, M., Hill, K. J., Lindorfer, M. A., and Stevens, T. H. (1993) Isolation of vacuolar membrane H+-ATPase-deficient yeast mutants: the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H+-ATPase. J. Biol. Chem. 268, 221–227.

    PubMed  CAS  Google Scholar 

  44. Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) The H subunit of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J. Biol. Chem. 275, 21761–21767.

    PubMed  CAS  Google Scholar 

  45. Arata, Y., Baleja, J. D., and Forgac, M. (2002) Cysteine-directed crosslinking to subunit B suggests that subunit E forms part of the peripheral stalk of the V-ATPase. J. Biol. Chem. 277, 3357–3363.

    PubMed  CAS  Google Scholar 

  46. Tomashek, J. J., Graham, L. A., Hutchins, M. U., Stevens, T. H., and Klionsky, D. J. (1997) V1-situated stalk subunits of the yeast V-ATPase. J. Biol. Chem. 272, 26787–26793.

    PubMed  CAS  Google Scholar 

  47. Crider, B. P., Andersen, P., White, A. E., Zhou, Z., Li, X., Mattsson, J. P., et al. (1997) Subunit G of the vacuolar proton pump. Molecular characterization, and functional expression. J. Biol. Chem. 272, 10721–10728.

    PubMed  CAS  Google Scholar 

  48. Lepier, A., Graf, R., Azuma, M., Merzendorfer, H., Harvey, W. R., and Wieczorek, H. (1996) The peripheral complex of the tobacco hornworm V-ATPase contains a novel 13-kDa subunit G. J. Biol. Chem. 271, 8502–8508.

    PubMed  CAS  Google Scholar 

  49. Supekova, L., Supek, F., and Nelson, N. (1995) The Saccharomyces cerevisiae VMA10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H+-ATPase. J. Biol. Chem. 270, 13726–13732.

    PubMed  CAS  Google Scholar 

  50. Hunt, I. E. and Bowman, B. J. (1997) The intriguing evolution of the b and G subunits in F-type and V-type ATPases. J. Bioenerg. Biomembr. 29, 533–540.

    PubMed  CAS  Google Scholar 

  51. Sorgen, P. L., Caviston, T. L., Perry, R. C., and Cain, B. D. (1998) Deletions in the second stalk of F1F0-ATP synthase in E. coli. J. Biol. Chem. 273, 27873–27878.

    PubMed  CAS  Google Scholar 

  52. Charsky, C. M., Schumann, N. J., and Kane, P. M. (2000) Mutational analysis of subunit G (VmA10p) of the yeast V-ATPase. J. Biol. Chem. 275, 37232–37239.

    PubMed  CAS  Google Scholar 

  53. Arata, Y., Baleja, J. D., and Forgac, M. (2002) Localization of subunits D, E, and G in the yeast V-ATPase complex using cysteine-mediated cross-linking to subunit B. Biochemistry 41: 11301–7.

    PubMed  CAS  Google Scholar 

  54. Curtis, K. K. and Kane, P. M. (2002) Novel V-ATPase complexes resulting from overproduction of Vma5p and VmA13p. J. Biol. Chem. 277, 8979–8988.

    PubMed  CAS  Google Scholar 

  55. Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997) VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J. Biol. Chem. 272, 4795–4803.

    PubMed  CAS  Google Scholar 

  56. Sun, S. Z., Xie, Z. S., and Stone, D. K. (1987) Isolation and reconstitution of the DCCDsensitive proton pore of the clathrincoated vesicle proton transclocating complex. J. Biol. Chem. 262, 14790–14794.

    PubMed  CAS  Google Scholar 

  57. Vik, S. B., Long, J. C., Wada, T., and Zhang, D. (2000) A model for the structure of subunit a of the E. coli ATP synthase and its role in proton translocation. Biochim. Biophys. Acta 1458, 457–466.

    PubMed  CAS  Google Scholar 

  58. Cain, B. D. (2000) Mutagenic analysis of F0 stator subunits. J. Bioenerg. Bioemembr. 32, 365–371.

    CAS  Google Scholar 

  59. Landolt-Marticorena, C., Williams, K. M., Correa, J., Chen, W., and Manolson, M. F. (2000). Evidence that the NH2-terminus of Vph1p, an integral subunit of the V0 sector of the yeast V-ATPase, interacts directly with the VmA1p and VmA13p subunits of the V1 sector. J. Biol. Chem. 275, 15449–15457.

    PubMed  CAS  Google Scholar 

  60. Schneider, E. and Altendorf, K. (1985) All three subunits are required for the reconstitution of an active proton channel F0 of E. coli ATP synthase F1F0. EMBO 4, 515–518.

    CAS  Google Scholar 

  61. Kawasaki-Nishi, S., Nishi, T., and Forgac, M. (2001) Arg735 of the 100 kDa a subunit of the yeast V-ATPase is essential for proton translocation. Proc. Natl Acad. Sci. 98, 12397–12402.

    PubMed  CAS  Google Scholar 

  62. Vaananen, H. K., Karhukorpi, E. K., Sundquist, K., Wallmark, B., Roininen, I., Hentunen, T., t al. (1990) Evidence for the presence of a proton pump of the vacuolar (H(+)-ATPase type in the ruffled borders of osteoclasts. J. Cell Biol. 111, 1305–1311.

    PubMed  CAS  Google Scholar 

  63. Gluck, S. L., Underhill, D. M., Iyori, M., Holliday, L. S., Kostrominova, T. Y., and Lee, B. S. (1996) Physiology and biochemistry of the kidney vacuolar H+-ATPase. Annu. Rev. Physiol. 58, 427–445.

    PubMed  CAS  Google Scholar 

  64. Breton, S., Smith, P. J., Lui, B., and Brown, D. (1996) Acidification of the male reproductive tract by a proton pumping H(+)-ATPase. Nat. Med. 2, 470–472.

    PubMed  CAS  Google Scholar 

  65. Martinez-Zaguilan, R. (1999) Angiostatin's partners. Science 284, 433–434.

    PubMed  CAS  Google Scholar 

  66. Forgac, M. (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol. Rev. 69, 765–796.

    PubMed  CAS  Google Scholar 

  67. Davoust, J., Gruenberg, J., and Howell, K. E. (1987) Two threshold values of low pH block endocytosis at different stages. EMBO 6, 3601–3609.

    CAS  Google Scholar 

  68. Van Weert, A. W., Dunn, K. W., Geuze, H. J., Maxfield, F. R., and Stoorvogel, W. (1995) Transport from late endosomes to lysosomes, but sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump. J. Cell Biol. 130, 821–834.

    PubMed  Google Scholar 

  69. Maxfield, F. R. and Yamashiro, D. J. (1987) Endosome acidification and the pathways of receptor-mediated endocytosis. Adv. Exp. Med. Biol. 225, 189–198.

    PubMed  CAS  Google Scholar 

  70. Mellman, I. (1992) The importance of being acid: the role of acidification in intracellular membrane traffic. J. Exp. Biol. 172, 39–45.

    PubMed  CAS  Google Scholar 

  71. Demaurex, N. (2002) pH homeostasis of cellular organelles. News Physiol Sci 17, 1–5.

    PubMed  CAS  Google Scholar 

  72. Mellman, I. (1996) Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625.

    PubMed  CAS  Google Scholar 

  73. Trowbridge, J. S., Collawn, J. F., and Hopkins, C. R. (1993) Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9, 129–161.

    PubMed  CAS  Google Scholar 

  74. Clague, M. J., Urbe, S., Aniento, F., and Gruenberg, J. (1994) Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J. Biol. Chem. 269, 21–24.

    PubMed  CAS  Google Scholar 

  75. Han, X., Bushweller, J. H., Cafiso, D. S., and Tamm, L. K. (2001) Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat. Struct. Biol. 8, 715–720.

    PubMed  CAS  Google Scholar 

  76. White, J. M. (1992) Membrane fusion. Science 258, 917–924.

    PubMed  CAS  Google Scholar 

  77. Kornfeld, S. (1992) Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu. Rev. Biochem. 61, 307–330.

    PubMed  CAS  Google Scholar 

  78. Schapiro, F. B. and Grinstein, S. (2000) Determinants of the pH of the Golgi complex. J. Biol. Chem. 275, 21025–21032.

    PubMed  CAS  Google Scholar 

  79. Brown, D. and Breton, S. (1996) Mitochondriarich, proton-secreting epithelial cels. J. Exp. Biol. 199, 2345–2358.

    PubMed  CAS  Google Scholar 

  80. Al-Awquati, Q. (1996) Plasticity in epithelial polarity of renal intercalated cells: targeting of the H(+)-ATPase and band 3. Am. J. Physiol. 270, C1571-C1580.

    Google Scholar 

  81. McKinney, T. D. and Burg, M. B. (1977) Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J. Clin. Invest. 60, 766–768.

    PubMed  CAS  Google Scholar 

  82. Lambard, W. E., Kokko, J. P., and Jacobson, H. R. (1983) Bicarbonate transport in cortical and outer medullary collecting tubules. Am. J. Physiol. 244, F289-F296.

    Google Scholar 

  83. Brown, D. and Breton, S. (2000) H(+)V-ATPasedependent luminal acidification in the kidney collecting duct and the epididymis/vas deferens: vesicle recycling and transcytotic pathways. J. Exp. Biol. 1, 137–145.

    Google Scholar 

  84. Brown, D., Gluck, S., and Hartwig, J. (1987) Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J. Cell Biol. 105, 1637–1648.

    PubMed  CAS  Google Scholar 

  85. Frattini, A., Orchard, P. J., Sobacchi, C., Giliani, S., Abinun, M., Mattsson, J. P., et al. (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat. Genet. 25, 343–346.

    PubMed  CAS  Google Scholar 

  86. Karet, F. E., Finberg, K. E., Nelson, R. D., Nayir, A., Moan, H., Sanjad, S. A., et al. (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nature Genet. 21, 84–90.

    PubMed  CAS  Google Scholar 

  87. Smith, A. N., Skaug, J., Choate, K. A., Nayir, A., Bakkaloglu, A., Ozen, S., et al. (2000) Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kDa subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat. Genet. 26, 71–75.

    PubMed  CAS  Google Scholar 

  88. Gluck, S., Cannon, C., and Al-Awqati, Q. (1982) Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal, membrane. Proc. Natl. Acad. Sci. USA 79, 4327–31.

    PubMed  CAS  Google Scholar 

  89. Swallow, C. J., Grinstein, S., and Rotstein, O. D. (1990) A vacuolar type (H+)-ATPase regulates cytoplasmic pH in murine macrophages. J. Biol. Chem. 265, 7645–7654.

    PubMed  CAS  Google Scholar 

  90. Swallow, C. J., Grinstein, S., Sudsbury, R. A., and Rotstein, O. D. (1993) Relative roles of Na+/H+ exchange and vacuolar-type H+ ATPases in regulating cytoplasmic pH and function in murine peritoneal macrophages. J. Cell Physiol. 157, 453–460.

    PubMed  CAS  Google Scholar 

  91. Nanda, A., Gukovskaya, A., Tseng, J., and Grinstein, S. (1992) Activation of vacuolar-type proton pumps by protein kinase C. Role in neutrophil pH regulation. J. Biol. Chem. 267, 22740–22746.

    PubMed  CAS  Google Scholar 

  92. Gottlieb, R. A., Giesing, H. A., Zhu, J. Y., Engler, R. L., and Babior, B. M. (1995) Cell acidification in apoptosis: granulocyte colonystimulating factor delays programmed cell death in neutrophils by up-regulating the vacuolar H(+)-ATPase. Proc. Natl. Acad. Sci. USA 92, 5965–8.

    PubMed  CAS  Google Scholar 

  93. Niessen, H., Meisenholder, G. W., Li, H. L., Guck, S. L., Lee, B. S., Bowman, B., et al. (1997) Granulocyt colony-stimulating factor upregulates the vacuolar proton ATPase in human neutrophils. Blood 90, 4598–4601.

    PubMed  CAS  Google Scholar 

  94. Gluck, S. (1992) The osteoclast as a unicellular proton-transporting epithelium. Am. J. Med. Sci. 303, 134–139.

    PubMed  CAS  Google Scholar 

  95. Li, Y. P., Chen, W., Liang, Y., Li, E., and Stashenko, P. (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat. Genet. 23, 447–451.

    PubMed  CAS  Google Scholar 

  96. Blair, H. C., Teitelbaum, S. L., Ghiselli, R., and Gluck, S. (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245, 855–857.

    PubMed  CAS  Google Scholar 

  97. Baron, R. (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat. Rec. 224, 317–324.

    PubMed  CAS  Google Scholar 

  98. Chatterjee, D., Chakraborty, M., Leit, M., Neff, L., Jamsa-Kellokumpu, S., Fuchs, R., et al. (1992) Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ATPases. Proc. Natl. Acad. Sci. USA 89, 6257–6261.

    PubMed  CAS  Google Scholar 

  99. Chatterjee, D., Chakraborty, M., Leit, M., Neff, L., Jamsa-Kellokumpu, S., Fuchs, R., et al. (1992) The osteoclast proton pump differs in its pharmacology and catalytic subunits from other vacuolar H(+)-ATPases. J. Exp. Biol. 172, 193–204.

    PubMed  CAS  Google Scholar 

  100. Mattsson, J. P., Schlesinger, P. H., Keeling, D. J., Teitelbaum, S. L., Stone, D. K., and Xie, X. S. (1994) Isolation and reconstitution of a vacuolar-type proton pump of osteoclast membranes. J. Biol. Chem. 269, 24979–24988.

    PubMed  CAS  Google Scholar 

  101. Bedford, J. M. (1970) Sperm capacitation and fertilization in mammals. Biol. Reprod. 2, 128–158.

    PubMed  CAS  Google Scholar 

  102. Meizel, S. and Deamer, D. W. (1978) The pH of the hamster sperm acrosome. J. Histochem. Cytochem. 26, 98–105.

    PubMed  CAS  Google Scholar 

  103. Huang, T. T. Jr., Hardy, D., Yanagimachi, H., Teuscher, C., Tung, K., Wild, G., et al. (1985) pH and protease control of acrosomal content stasis and release during the guinea pig sperm acrosome reaction. Biol. Reprod. 32, 451–462.

    PubMed  CAS  Google Scholar 

  104. Kawa, G., Yamamoto, A., Yoshimori, T., Muguruma, K., Matsuda, T., and Moriyama, Y. (2000) Immunohistochemical localization of V-ATPases in rat spermatids. Int. J. Androl. 23, 278–283.

    PubMed  CAS  Google Scholar 

  105. Martínez-Zaguilán, R., Lynch, R., Martinez, G., and Gillies, R. (1993) Vacuolar-type H+ATPase are functionally expressed in plasma membrane of human tumor cells. Am. J. Physiol. 265, C1015-C1029.

    PubMed  Google Scholar 

  106. Griffiths, J. R. (1991) Are cancer cells acidic? Br. J. Cancer 64, 425–427.

    PubMed  CAS  Google Scholar 

  107. Stubbs, M., Veech, R. L., and Griffiths, J. R. (1995) Tumor metabolism: the lessons of magnetic resonance spectroscopy. Adv. Enzyme Regul. 35, 101–115.

    PubMed  CAS  Google Scholar 

  108. Putna, R. W. (2001) Intracellular pH regulation, in Cell Physiology Source (Speralakis, N., ed.), 3rd ed., Academic Press, pp. 357–376.

  109. Gillies, R. J. and Martínez-Zaguilán, R. (1991) Regulation of intracellular pH in BALB/c 3T3 cells. Bicarbonate raises pH via NaHCO3/HCl exchange and attenuates the activation of Na+/H+ exchange by serum. J. Biol. Chem. 266, 1551–1556.

    PubMed  CAS  Google Scholar 

  110. Perona, R. and Serrano, R. (1988) Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature 334, 438–400.

    PubMed  CAS  Google Scholar 

  111. Perona, R., Portillo, F., Giraldez, F., and Serrano, R. (1990) Transformation and pH hoemostasis of fibroblasts expressing yeast H(+)-ATPase containing site-directed mutations. Mol. Cell Biol 10, 4110–4115.

    PubMed  CAS  Google Scholar 

  112. Peterson, E. P., Martinez, G. M., Martínez-Zaguilán, R., Perona, R., and Gillies, R. J. (1994) NIH 3T3 cells transfected with a yeast H (+)-ATPase have altered sensitivity to insulin, insulin growth, factor-I, and platelet-derived growth factor-AA. J. Cell Physiol. 159, 551–560.

    PubMed  CAS  Google Scholar 

  113. Gillies, R. J., Martínez-Zaguilán, R., Martinez, G. M., Serrano, R., and Perona, R. (1990) Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiological conditions. Proc. Natl. Acad. Sci. USA 8, 7414–7418.

    Google Scholar 

  114. Heinz, A., Sachs, G., and Schafer, J. A. (1981) Evidence for activation of an active electrogenic proton pump in Ehrlich ascites tumor cells during glycolysis. J. Membr. Biol. 61, 143–153.

    PubMed  CAS  Google Scholar 

  115. Ober, S. S., and Pardee, A. B. (1987) Intracellular pH is increased after trasformation of Chinese hamster embryo fibroblasts. Proc. Natl, Acad. Sci. USA 84, 2766–2770.

    CAS  Google Scholar 

  116. Cassel, D., Katz, M., and Rotman, M. (1986) Depletion of cellular ATP inhibits Na+/H+ antiport in cultured human cells. Modulation of the regulatory effect of intracellular protons on the antiporter activity. J. Biol. Chem. 261, 5460–5466.

    PubMed  CAS  Google Scholar 

  117. Gillies, R. J., Ogino, T., Shulman, R. G., and Ward, D. C. (1982) 31P nuclear magnetic resonance evidence for the regulation of intracellular pH by Ehrlich ascites tumor cells. J. Cell Biol. 95, 24–28.

    PubMed  CAS  Google Scholar 

  118. Manabe, T., Yoshimori, T., Henomatsu, N., and Tashiro, Y. (1993) Inhibitors of vacuolar type H +-ATPase suppresses proliferation of cultured cells. J. Cell Physiol. 157, 445–452.

    PubMed  CAS  Google Scholar 

  119. Liotta, L. A., Rao, C. N., and Wewer, U. M. (1986) Biochemical interactions of tumor cells with the basement membrane. Annu. Rev. Biochem. 55, 1037–1057.

    PubMed  CAS  Google Scholar 

  120. Yagel, S., Khokha, R., Denhardt, D. T., Kerbel, R. S., Parhar, R. S., and Lala, P. K. (1989) Mechanisms of cellular invasiveness: a comparison of amnion invasion in vitro and metastatic behavior in vivo. J. Natl. Cancer Inst. 81, 768–775.

    PubMed  CAS  Google Scholar 

  121. Hendrix, M. J., Seftor, E. A., Seftor, R. E., and Fidler, I. J. (1987) A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett. 38, 137–147.

    PubMed  CAS  Google Scholar 

  122. Marks, P. W. and Maxfield, F. R. (1990) Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J. Cell Biol. 110, 43–52.

    PubMed  CAS  Google Scholar 

  123. Milne, J. L. and Coukel, M. B. (1991) A Ca2+ transport system associated with the plasma membrane of Dictyostelium discoideum is activated by different, chemoattractant receptors. J. Cell Biol. 112, 103–110.

    PubMed  CAS  Google Scholar 

  124. Savarese, D. M., Russell, J. T., Fatatis, A., and Liotta, L. A. (1992) Type IV collagen stimulates an increase in intracellular calcium. Potential role in tumor cell motility. J. Biol. Chem. 267, 21928–21935.

    PubMed  CAS  Google Scholar 

  125. Korczak, B., Whale, C., and Kerbel, R. S. (1989) Possible involvement of Ca2+ mobilization and protein kinase C activation in the induction of spontaneous metastasis by mouse mammary adenocarcinoma cells. Cancer Res. 49, 2597–2602.

    PubMed  CAS  Google Scholar 

  126. Miller, F. R. and Heppner, G. H. (1990) Cellular interactions in metastasis. Cancer Metastasis Rev. 9, 21–34.

    PubMed  CAS  Google Scholar 

  127. Mareel, M. M., Van Roy, F. M., and De Baetselier, P. (1990) The invasive phenotypes. Cancer Metastasis Rev. 9, 45–62.

    PubMed  CAS  Google Scholar 

  128. Stetler-Stevenson, W. G. (1990) Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 9, 289–303.

    PubMed  CAS  Google Scholar 

  129. Lah, T. T., Kokalj-Kunovar, M., Strukelj, B., Pungercar, J., Barlic-Maganja, D., Drobnic-Kosorok, M., et al. (1992) Stefins and lysosomal cathepsins B, L and D in human breast carcinoma. Int. J. Cancer 50, 36–44.

    PubMed  CAS  Google Scholar 

  130. Rozhin, J., Sameni, M., Ziegler, G., and Sloane, B. F. (1994) Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res. 54, 6517–25.

    PubMed  CAS  Google Scholar 

  131. Matrisian, L. M. (1992) The matrix-degrading metalloproteinases. Bioassays 14, 455–463.

    CAS  Google Scholar 

  132. Fidler, I. J. (1991) Cancer metastasis. Br. Med. Bull. 47, 157–177.

    PubMed  CAS  Google Scholar 

  133. Vassalli, J. D., Sappino, A. P., and Belin, D. (1991) The plasminogen activator/plasmin system. J. Clin. Invest. 88, 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  134. Morisset, M., Capony, F., and Rochefort, H. (1986) the 52-kDa estrogen-induced protein secreted by MCF-7 cells is a lysosomal acidic protease. Biochim. Biophys. Res. Commun. 138, 102–109.

    CAS  Google Scholar 

  135. Webb, S. D., Sherratt, J. A., and Fish, R. G. (1999) Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model. Clin. Exp. Metastasis 17, 397–407.

    PubMed  CAS  Google Scholar 

  136. Martínez-Zaguilán, R., Seftor, E. A., Seftor, R. E. B., Chu, Y. W., Gillies, R. J., and Hendrix, M. J. C. (1996) Acidic pH enhance the invasive behavior of human melanoma cells. Clin. Exp. Metastasis 14, 176–186.

    PubMed  Google Scholar 

  137. Stubbs, M., McSheehy, P. M., Griffiths, J. R., and Bashford, C. L. (2000) Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today 6, 15–19.

    PubMed  CAS  Google Scholar 

  138. Gatenby, R. A. and Gawlinski, E. T. (1996) A reaction-diffusion model of cancer invasion. Cancer Res. 56, 5745–5753.

    PubMed  CAS  Google Scholar 

  139. Cuvier, C., Jang, A., and Hill, R. P. (1997) Exposure to hypoxia, glucose starvation and acidosis: effect on invasive capacity of murine tumor cells and correlation with cathepsin (L+B) secretion. Clin. Exp. Metastasis 15, 19–25.

    PubMed  CAS  Google Scholar 

  140. Thomsen, P., Rudenko, O., Berezin, V., and Norrild, B. (1999) The HPV-16 E5 oncogene and bafilomycin A1 influence cell motility. Biochim. Biophys. Acta 1452, 285–295.

    PubMed  CAS  Google Scholar 

  141. Hwang, E. S., Nottoli, T., and Dimaio, D. (1995) The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 211, 227–233.

    PubMed  CAS  Google Scholar 

  142. Yamshchikov, V. F. and Compans, R. W. (1995) Formation of the flavivirus envelope: role of the viral NS2B-NS3 protease. J. Virol. 69, 1995–2003.

    PubMed  CAS  Google Scholar 

  143. Montcourrier, P., Mangeat, P. H., Valembois, C., Salazar, G., Sahuquet, A., Duperray, C., et al. (1994) Characterization of very acidic phagosomes in breast cancer cells and their association with invasion. J. Cell Sci. 107, 2381–91.

    PubMed  Google Scholar 

  144. Gluck, S. L. (1992) The structure and biochemistry of the vacuolar H+-ATPase in proximal and distal urinary acidification. J. Bioenerg. Biomembr. 24, 351–360.

    PubMed  CAS  Google Scholar 

  145. Brown, D., Lui, B., Gluck, S., and Sabolic, I. (1992) A plasma membrane proton ATPase in specialized cells of rat epididymis. Am. J. Physiol. 263, C913-C916.

    PubMed  CAS  Google Scholar 

  146. Harvey, W. R. and Wieczorek, H. (1997) Animal plasma membrane energization by chemiosmotic H+ V-ATPases. J. Exp. Biol. 200, 203–216.

    PubMed  CAS  Google Scholar 

  147. Martínez-Zaguilán, R., Martinez, G. M., Gomez, A., Hendrix, M. J. C., and Gillies, R. J. (1998) Distinct regulation of pHin and [Ca2+]in in human melanoma cells with different metastatic potential. J. Cell Physiol. 176, 196–205.

    PubMed  Google Scholar 

  148. Vitavska, O., Wieczorek, H., and Merzendorfer, H. (2003) A novel role for subunit C in mediating binding of the H+-V-ATPase to the actin cytoskeleton. J. Biol. Chem. 278, 18499–18505.

    PubMed  CAS  Google Scholar 

  149. Holliday, L. S., Lu, M., Lee, B. S., Nelson, R. D., Solivan, S., Zhang, L., et al. (2000) The aminoterminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J. Biol. Chem. 275, 32331–32337.

    PubMed  CAS  Google Scholar 

  150. Lee, B. S., Gluck, S. L., and Holliday, L. S. (1999) Interaction between vacuolar H(+)-ATPase and microfilaments during osteoclast activation. J. Biol. Chem. 274, 29164–29171.

    PubMed  CAS  Google Scholar 

  151. Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G-H., Wada, Y., and Futaie, M. (2003) From lysosomes to plasma membrane: localization of vacuolar type H+-ATPase with the a3 isoform during osteoclast differentiation. J. Biol. Chem. 278, 22023–22030.

    PubMed  CAS  Google Scholar 

  152. Bernstein, B. W., Painter, W. B., Chen, H., Minamide, L. S., Abe, H., and Bamburg, J. R. (2000) Intracellular pH modulation of ADF/cofilin proteins. Cell Motil. Cytoskeleton 47, 319–336.

    PubMed  CAS  Google Scholar 

  153. Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H., and Barber, D. L. (2000) Direct binding of the Na−H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol. Cell 6, 1425–1436.

    PubMed  CAS  Google Scholar 

  154. Hawkins, M., Pope, B., Maciver, S. K., and Weeds, A. G. (1993) Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochemistry 32, 9985–9993.

    PubMed  CAS  Google Scholar 

  155. Hayden, S. M., Miller, P. S., Brauweiler, A., and Bamburg, J. R. (1993) Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry 32, 9994–10004.

    PubMed  CAS  Google Scholar 

  156. Chan, A. Y., Bailly, M., Zebda, N., Segall, J. E., and Condeelis, J. S. (2000) Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J Cell Biol 148, 531–542.

    PubMed  CAS  Google Scholar 

  157. Zebda, N., Bernard, O., Bailly, M., Welti, S., Lawrence, D. S., and Condeelis, J. S. (2000) Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J. Cell Biol. 151, 1119–1128.

    PubMed  CAS  Google Scholar 

  158. Ichetovkin, I., Grant, W., and Condeelis, J. (2002) Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79–84.

    PubMed  CAS  Google Scholar 

  159. Sumi, T., Matsumoto, K., Takai, Y., and Nakamura, T. (1999) Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J. Cell Biol. 147, 1519–1532.

    PubMed  CAS  Google Scholar 

  160. Lawler, S. (1999) Regulation of actin dynamics: the LIM kinase connection. Curr Biol. 9, R800-R802.

    PubMed  CAS  Google Scholar 

  161. Juranka, P. F., Zastawny, R. L., and Ling, V. (1989) P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins. FASEB J. 3, 2583–2592.

    PubMed  CAS  Google Scholar 

  162. Roninson, I. B. (1987) Molecular mechanism of multidrug resistance in tumor cells. Clin. Physiol. Biochem. 5, 140–151.

    PubMed  CAS  Google Scholar 

  163. Gottesman, M. M. and Pastan, I. (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62, 385–427.

    PubMed  CAS  Google Scholar 

  164. Altenberg, G. A., Young, G., Horton, J. K., Glass, D., Belli, J. A., and Reuss, L. (1993) Changes in intra- or extracellular pH do not mediate P-glycoprotein-dependent multidrug resistance. Proc. Natl. Acad. Sci. USA 90, 9735–9738.

    PubMed  CAS  Google Scholar 

  165. Keizer, H. G. and Joenje, H. (1989) Increased cytosolic pH in multidrug-resistant human lung tumor cells: effect of verapamil. J. Natl. Cancer Inst. 81, 706–709.

    PubMed  CAS  Google Scholar 

  166. Boscoboinik, D., Gupta, R. S., and Epand, R. M. (1990) Investigation of the relationship between altered intracellular pH and multidrug resistance in mammalian cells. Br. J. Cancer 61, 568–572.

    PubMed  CAS  Google Scholar 

  167. Andersson, G. N., Torndal, U. B., and Eriksson, L. C. (1989) Decreased vacuolar acidification capacity in drug-resistant rat liver preneoplastic nodules. Cancer Res. 49, 3765–3769.

    PubMed  CAS  Google Scholar 

  168. Marsh, W., Sicheri, D., and Center, M. S. (1986) Isolation and characterization of adriamycin-resistant HL-60 cells which are not defective in the initial intracellular accumulation of drug. Cancer Res. 46, 4053–4057.

    PubMed  CAS  Google Scholar 

  169. McGrath, T. and Center, M. S. (1987) Adriamycin resistance in HL60 cells in the absence of detectable P-glycoprotein. Biochem. Biophys. Res. Commun. 145, 1171–1176.

    PubMed  CAS  Google Scholar 

  170. Marquardt, D. and Center, M. S. (1991) Involvement of vacuolar H+-adenosine triphosphatase activity in multidrug resistance in HL60 cells. J. Natl. Cancer Inst. 83, 1098–1102.

    PubMed  CAS  Google Scholar 

  171. Martínez-Zaguilán, R., Raghunand, N., Lynch, R. M. Bellamy, W., Martinez, G. M., Rojas, B., et al. (1999) pH and drug resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochem. Pharmacol. 57, 1037–1046.

    PubMed  Google Scholar 

  172. Raghunand, N., Martínez-Zaguilán, R., Wright, S. H., and Gillies, R. J. (1999) pH and drug resistance. II. Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs. Biochem. Pharmacol. 57, 1047–1058.

    PubMed  CAS  Google Scholar 

  173. Versantvoort, C. H., Broxterman, H. J., Pinedo, H. M., de Vries, E. G., Feller, N., Kuiper, C. M., et al. (1992) Energy-dependent processes involved in reduced drug accumulation in multidrug-resistant human lung cancer cell lines without P-glycoprotein expression. Cancer Res. 52, 17–23.

    PubMed  CAS  Google Scholar 

  174. Halaban, R., Patton, R. S., Cheng, E., Svedine, S., Trombetta, E. S., Wahl, M. L., et al. (2002) Abnormal acidification of melanoma cells induces tyrosinase retention in the early secretory pathway. J. Biol. Chem. 277, 14821–14828.

    PubMed  CAS  Google Scholar 

  175. Laurencot, C. M., Andrews, P. A., and Kennedy, K. A. (1995) Inhibitors of intracellular pH regulation induce cisplatin resistance in EMT6 mouse mammary tumor cells. Oncol Res. 7, 363–369.

    PubMed  CAS  Google Scholar 

  176. Xu, J., Feng, H. T., Wang, C., Yip, K. H., Pavlos, N., Papadimitriou, J. M., et al. (2003) Effects of Bafilomycin A1: an inhibitor of vacuolar H (+)-ATPases on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. J. Cell Biochem. 88, 1256–1264.

    PubMed  CAS  Google Scholar 

  177. Tanigaki, K., Sasaki, S., and Ohkuma, S. (2003) In bafilomycin A1-resistant cells, bafilomycin A1 raised lysosomal pH and both prodigiosins and concanamycin A inhibited growth through apoptosis. FEBS Lett. 537, 79–84.

    PubMed  CAS  Google Scholar 

  178. Nishihara, T., Akifusa, S., Koseki, T., Kato, S., Muro, M., and Hanada, N. (1995) Specific inhibitors of vacuolar type H(+)-ATPases induce apoptotic cell death. Biochem. Biophys. Res Commun. 212, 255–262.

    PubMed  CAS  Google Scholar 

  179. Akifusa, S., Ohguchi, M., Koseki, T., Nara, K., Semba, I., Yamato, K., et al. (1998) Increase in Bcl-2 level promoted by CD40 ligation correlates with inhibition of B cell apoptosis induced by vacuolar type H(+)-ATPase inhibitor. Exp Cell Res. 238, 82–89.

    PubMed  CAS  Google Scholar 

  180. Ishisaki, A., Hashimoto, S., Amagasa, T., and Nishihara, T. (1999) Caspase-3 activation during the process of apoptosis induced by a vacuolar type H(+)-ATPase inhibitor. Biol Cell. 91, 507–513.

    PubMed  CAS  Google Scholar 

  181. Aiko, K., Tsujisawa, T., Koseki, T., Hashimoto, S., Morimoto, Y., Amagasa, T., et al. (2002) Involvement of cytochrome c and caspases in apoptotic cell death of human submandibular gland ductal cells induced by concanamycin A. Cell Signal 14, 717–722.

    PubMed  CAS  Google Scholar 

  182. Torigoe, T., Izumi, H., Ishiguchi, H., Uramoto, H., Murakami, T., Ise, T., et al. (2002) Enhanced expression of the human vacuolar H+-ATPase c subunit gene (ATP6L) in response to anticancer agents. J Biol Chem. 277, 36534–36543.

    PubMed  CAS  Google Scholar 

  183. Yoshimoto, Y. and Imoto, M. (2002) Induction of EGF-dependent apoptosis by vacuolartype H+-ATPase inhibitors in A431 cells overex-pressing the EGF receptor. Exp Cell Res. 279, 118–127.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad R. Sennoune.

Additional information

F in F0F1 ATPase is the coupling energy factor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sennoune, S.R., Luo, D. & Martinez-Zaguilán, R. Plasmalemmal vacuolar-type H+-ATPase in cancer biology. Cell Biochem Biophys 40, 185–206 (2004). https://doi.org/10.1385/CBB:40:2:185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:40:2:185

Index Entries

Navigation