Skip to main content
Log in

Living in three dimensions

3D nanostructured environments for cell culture and regenerative medicine

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Research focused on deciphering the biochemical mechanisms that regulate cell proliferation and function has largely depended on the use of tissue culture methods in which cells are grown on two-dimensional (2D) plastic or glass surfaces. However, the flat surface of the tissue culture plate represents a poor topological approximation of the more complex three-dimensional (3D) architecture of the extracellular matrix (ECM) and the basement membrane (BM), a structurally compact form of the ECM. Recent work has provided strong evidence that the highly porous nanotopography that results from the 3D associations of ECM and BM nanofibrils is essential for the reproduction of physiological patterns of cell adherence, cytoskeletal organization, migration, signal transduction, morphogenesis, and differentiation in cell culture. In vitro approximations of these nanostructured surfaces are therefore desirable for more physiologically mimetic model systems to study both normal and abnormal functions of cells, tissues, and organs. In addition, the development of 3D culture environments is imperative to achieve more accurate cell-based assays of drug sensitivity, high-throughput drug discovery assays, and in vivo and ex vivo growth of tissues for applications in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berthiaume, F., Moghe, P. V., Toner, M., and Yarmush, M. L. (1996) Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J. 10, 1471–1484.

    PubMed  CAS  Google Scholar 

  2. Knedlitschek, G., Schneider, F., Gottwald, E., Schaller, T., Eschbach, E., and Weibezahn, K. F. (1999) A tissue-like culture system using microstructures: influence of extracellular matrix material on cell adhesion and aggregation. J. Biomech. Eng. 121, 35–39.

    PubMed  CAS  Google Scholar 

  3. Ertel, S. I., Chilkoti, A., Horbett, T. A., and Ratner, B. D. (1991) Endothelial cell growth on oxygen-containing films deposited by radio-frequency plasmas; the role of surface carbonyl groups. Biomater. Sci. Polym. Ed. 3, 163–183.

    CAS  Google Scholar 

  4. Hojo, M., Inokuchi, S., Kidokoro, M., et al. (2003) Induction of vascular endothelial growth factor by fibrin as a dermal substrate for cultured skin substitute. Plast. Reconstr. Surg. 111, 1638–1645.

    Article  PubMed  Google Scholar 

  5. Kim, B. S., Nikolovski, J., Bonadio, J., Smiley, E., and Mooney, D. J. (1999) Engineered smooth muscle tissues: regulating cell phenotype with the scaffold, Exper. Cell. Res. 251, 318–328.

    Article  CAS  Google Scholar 

  6. Sakiyama, S. E., Schense, J. C., and Hubbell, J. A. (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering, FASEB J. 13, 2214–2224.

    PubMed  CAS  Google Scholar 

  7. Lutolf, M. P., Lauer-Fields, J. L., Schmoekel, H. G., et al. (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. USA 100, 5413–5418.

    Article  PubMed  CAS  Google Scholar 

  8. Bottaro, D. P., Liebmann-Vinson, A., and Heidaran, M. A. (2002) Molecular signaling in bioengineered tissue microenvironments. Ann. N. Y. Acad. Sci. 961, 143–153.

    Article  PubMed  CAS  Google Scholar 

  9. Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A., and Mooney, D. J. (2002) Engineering growing tissues. Proc. Natl. Acad. Sci. USA 99, 12025–12030.

    Article  PubMed  CAS  Google Scholar 

  10. Stegman, J. P. and Nerem, R. M. (2003) Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Exp. Cell. Res. 283, 146–155.

    Article  CAS  Google Scholar 

  11. Walpita, D. and Hay, E. (2002) Studying actin-dependent processes in tissue culture. Nat. Rev. Mol. Rev. Mol. Cell Biol. 3, 137–141.

    Article  CAS  Google Scholar 

  12. Mueller-Klieser, W. (1997) Three dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol. (Cell Physiol.) 42, C1109-C1123.

    Google Scholar 

  13. Grinnell, F., Ho, C.-H., Tamariz, E., Lee, D. J., and Skuta, G. (2003) Dendritic fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell. 14, 384–395.

    Article  PubMed  CAS  Google Scholar 

  14. Abbott, A. (2003) Cell culture: biology's new dimension. Nature 424, 870–872.

    Article  PubMed  CAS  Google Scholar 

  15. Kalluri, R. (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3, 422–433.

    Article  PubMed  CAS  Google Scholar 

  16. Ashkenas, J., Muschler, J., and Bissell, M. J. (1996) The extracellular matrix in epithelial biology: shared molecules and common themes in distant phyla. Dev. Biol. 180, 433–444.

    Article  PubMed  CAS  Google Scholar 

  17. Hay, E. D. (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev. Dyn. 233, 706–720.

    Article  PubMed  CAS  Google Scholar 

  18. Boudreau, N. J. (2003) Organized living: from cell surfaces to basement membranes. Sci. STKE 196, pe34.

    Google Scholar 

  19. Miner, J. H. and Yurchenco, P. D. (2004) Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 20, 255–284.

    Article  PubMed  CAS  Google Scholar 

  20. Michelacci, Y. M. (2003) Collagens and proteoglycans of the corneal extracellular matrix. Braz. J. Med. Biol. Res. 36, 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  21. Abrams, G. A., Goodman, S. L., Nealy, P. F., Franco, M., and Murphy, C. J. (2000) Nanoscale topography of the basement membrane underlying the corneal epithelium of the Rhesus macaque. Cell Tissue Res. 299, 39–46.

    Article  PubMed  CAS  Google Scholar 

  22. Petersen, O. W., Ronnow-Jessen, L., Howlett, A. R., and Bissell, M. J. (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. USA 89, 9064–9068.

    Article  PubMed  CAS  Google Scholar 

  23. Schmeichel, K. L. and Bissell, M. J. (2003) Modeling tissue-specific signaling and organ function in three dimensions. J. Cell. Sci. 116, 2377–2388.

    Article  PubMed  CAS  Google Scholar 

  24. Weaver, V. M., Lelievre, S., Lakins, J. N. et al. (2002) β-4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2, 205–216.

    Article  PubMed  CAS  Google Scholar 

  25. Kleinman, H. K., Philp, D., and Hoffman, M. P. (2003) Role of the extracellular matrix in morphogenesis. Curr. Op. Biotech. 14, 526–532.

    Article  CAS  Google Scholar 

  26. Cukierman, E., Pankov, R., Stevens, D. R., and Yamada, K. M. (2001) Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712.

    Article  PubMed  CAS  Google Scholar 

  27. Katz, B. Z., Zamir, E., Bershadsky, A., Kam, Z., Yamada, K. M., and Geiger, B. (2000) Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol. Biol. Cell 11, 1047–1060.

    PubMed  CAS  Google Scholar 

  28. Cukierman, E., Pankov, R., and Yamada, K. M. (2002) Cell interactions with three-dimensional matrices. Curr. Opin. Cell. Biol. 14, 633–639.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, H. B., Dembo, M., Hanks, S. K., and Wang, Y-L. (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl. Acad. Sci. USA 98, 11295–11300.

    Article  PubMed  CAS  Google Scholar 

  30. Meiners, S. and Mercado, M. L. (2003) Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors: strategies to improve neuronal regeneration. Mol. Neurobiol. 27, 177–196.

    Article  PubMed  CAS  Google Scholar 

  31. Shin, H., Jo, S., and Mikos, A. G. (2003) Biomimetic materials for tissue engineering. Biomaterials 24, 4353–4364.

    Article  PubMed  CAS  Google Scholar 

  32. Vlodavsky, I. (1999) Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells, in Current Protocols in Cell Biology, Vol. 1 (Bonifacino, J., Dasso, M., Harford, J., Lippincott-Schwartz, J., and Yamada, K. M., eds), John Wiley & Sons, New York, pp. 10.14.11–10.14.14.

    Google Scholar 

  33. Zamir, E. and Geiger, B. (2001) Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 14, 3583–3590.

    Google Scholar 

  34. Wozniak, M. A., Modzelewska, K., Kwong, L., and Keely, P. (2004) Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta. 1692, 103–119.

    PubMed  CAS  Google Scholar 

  35. Dhiman, H. K., Ray, A. R., and Panda, A. K. (2005) Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials 26, 979–986.

    Article  PubMed  CAS  Google Scholar 

  36. Pogany, G., Timar, F., Olah, J., et al. (2001) Role of the basement membrane in tumor cell dormancy and cytotoxic resistance. Oncology 60, 274–281.

    Article  PubMed  CAS  Google Scholar 

  37. Shain, K. H. and Dalton, W. S. (2001) Cell adhesion is a key determinant in de novo multidrug resistance (MDR): new targets for the prevention of acquired MDR. Mol. Cancer Ther. 1, 69–78.

    PubMed  CAS  Google Scholar 

  38. Buttery, R. C., Rintoul, R. C., and Sethi, T. (2004) Small cell lung cancer: the importance of the extracellular matrix. Int. J. Biochem. Cell. Biol. 36, 1154–1160.

    Article  PubMed  CAS  Google Scholar 

  39. Balis, F. M. (2002) Evolution of anticancer drug discovery and the role of cell-based screening. J. Natl. Cancer Inst. 94, 78–79.

    PubMed  Google Scholar 

  40. Friedl, P. (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Op. Cell. Biol. 16, 14–23.

    Article  PubMed  CAS  Google Scholar 

  41. Lauffenburger, D. A. and Horwitz, A. F. (1996) Cell migration: a physically integrated molecular process. Cell 84, 359–369.

    Article  PubMed  CAS  Google Scholar 

  42. Sahai, E. and Marshall, C. J. (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nat. Cell Biol. 5, 711–719.

    Article  PubMed  CAS  Google Scholar 

  43. Meshel, A. S., Wei, Q., Adelstein, R. S., and Sheetz, M. P. (2005) Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat. Cell. Biol. 7, 157–164.

    Article  PubMed  CAS  Google Scholar 

  44. Condeelis, J. and Segall, J. E. (2003) Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3, 921–930.

    Article  PubMed  CAS  Google Scholar 

  45. Knight, B., Laukaitis, C., Akhtar, N., Hotchin, N. A., Edlund, M., and Horwitz, A. R. (2000) Visualizing muscle cell migration in situ. Curr. Biol. 10, 576–585.

    Article  PubMed  CAS  Google Scholar 

  46. Tamariz, E. and Grinnell, F. (2002) Modulation of fibroblast morphology and adhesion during collagen matrix remodeling. Mol. Biol. Cell 13, 3915–3929.

    Article  PubMed  CAS  Google Scholar 

  47. Pelham, R. J. and Wang, Y-L. (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Nat. Acad. Sci. USA 94, 13661–13665.

    Article  PubMed  CAS  Google Scholar 

  48. Wang, Y.-K., Wang, Y.-H., Wang, C.-Z., et al. (2003) Rigidity of collagen fibrils controls collagen gel-induced down-regulation of focal adhesion complex proteins mediated by α2β1 integrin. J. Biol. Chem. 278, 21886–21892.

    Article  PubMed  CAS  Google Scholar 

  49. Semler, E. J., Lancin, P. A., Dasgupta, A., and Moghe, P. V. (2005) Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol. Bioeng. 89, 296–307.

    Article  PubMed  CAS  Google Scholar 

  50. Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., and Discher, D. (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628.

    Article  PubMed  CAS  Google Scholar 

  51. Danielson, C. C. (2004) Tensile mechanical and creep properties of Descement's membrane and lens capsule. Exper. Eye. Res. 79, 343–350.

    Article  CAS  Google Scholar 

  52. Chen, C. S., Yannas, I. V., and Spector, M. (1995) Pore strain behaviour of collagen-glycosaminoglycan analogues of extracellular matrix. Biomaterials 16, 777–783.

    Article  PubMed  CAS  Google Scholar 

  53. Codd, S. L., Lambert, R. K., Alley, M. R., Pack, R. J. (1994) Tensile stiffness of ovine tracheal wall. J. Appl. Physiol. 76, 2627–2635.

    Article  PubMed  CAS  Google Scholar 

  54. Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., and Keely, P. J. (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163, 583–595.

    Article  PubMed  CAS  Google Scholar 

  55. Deroanne, C. F., Lapiere, C. M., and Nusgens, B. V. (2001) In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49, 647–658.

    Article  PubMed  CAS  Google Scholar 

  56. Paszek, M. J. and Weaver, V. M. (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J. Mamm. Gland Biol. Neoplasia 9, 325–342.

    Article  Google Scholar 

  57. Gunn, J. W., Turner, S. D., and Mann, B. K. (2005) Adhesive and mechanical properties of hydrogels influence neurite extension. J. Biomed. Mater. Res. 72A, 91–97.

    Article  CAS  Google Scholar 

  58. Grinnell, F. (2003) Fibroblast biology in three-dimensional collagen matrices. Trends Cell. Biol. 13, 264–269.

    Article  PubMed  CAS  Google Scholar 

  59. Mercier, I., Lechaire, J-P. Desmouliere, A., Gaill, F., and Aumailley, M. (1996) Interactions of human skin fibroblasts with monomeric or fibrillar collagens induce different organization of the cytoskeleton. Exp. Cell Res. 225, 245–256.

    Article  PubMed  CAS  Google Scholar 

  60. Sato, K., Hattori, S., Irie, S., and Kawashima, S. (2003) Spike formation by fibroblasts adhering to fibrillar collagen I gel. Cell. Struc. Func. 28, 229–241.

    Article  CAS  Google Scholar 

  61. Koyama, H., Raines, E. W., Bornfeldt, K. E., Roberts, J. M., and Ross, R. (1996) Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of cdk2 inhibitors. Cell 87, 1069–1078.

    Article  PubMed  CAS  Google Scholar 

  62. Overton, J. (1977) Response of epithelial and mesenchymal cells to culture on basement lamella observed by scanning microscopy. Exp. Cell Res. 105, 313–323.

    Article  PubMed  CAS  Google Scholar 

  63. Meller, D., Peters, K., and Meller, K. (1997) Human cornea and sclera studied by atomic force microscopy. Cell Tiss. Res. 288, 111–118.

    Article  CAS  Google Scholar 

  64. Sasaki, N. and Odajima, S. (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech 29, 1131–1136.

    Article  PubMed  CAS  Google Scholar 

  65. Lee, C. H., Shin, H. J., Cho, I. H., et al. (2005) Nanofiber alignment and direction of mechanical strain affect the ECM production of human AACL fibroblast. Biomaterials 26, 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  66. Nakatsuji, N. and Johnson, K. E. (1984) Experimental manipulation of a contact guidance system in amphibian gastrulation by mechanical tension. Nature 307, 453–455.

    Article  PubMed  CAS  Google Scholar 

  67. Oakley, C., Jaeger, N. A. F., and Brunette, D. M. (1997) Sensitivity of fibroblasts and their cytoskeletons to substratum topographies: topographic guidance and topographic compensation by micromachined grooves of different dimensions. Exp. Cell Res. 234, 413–424.

    Article  PubMed  CAS  Google Scholar 

  68. Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J., and Nealey, P. F. (2003) Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116, 1881–1892.

    Article  PubMed  CAS  Google Scholar 

  69. Lehnert, D., Wehrle-Haller, B., David, C., et al. (2003) Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 117, 41–52.

    Article  CAS  Google Scholar 

  70. Dalby, M. J., Riehle, M. O., Sutherland, D. S., Agheli, H., and Curtis, A. S. G. (2004) Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials 25, 5415–5422.

    Article  PubMed  CAS  Google Scholar 

  71. Dalton, B. A., Walboomers, X. F., Diziegielewski, M., et al. (2001) Modulation of epithelial tissue and cell migration by microgrooves. J. Biomed. Mater. Res. 56, 195–207.

    Article  PubMed  CAS  Google Scholar 

  72. Wojciak-Stothard, B., Curtis, A., Monaghan, W., MacDonald, K., and Wilkinson, C. (1996) Guidance and activation of murine macrophages by nanometric scale topography. Exp. Cell Res. 223, 426–435.

    Article  PubMed  CAS  Google Scholar 

  73. Webb, A., Clark, P., Skepper, J., Compston, A., and Wood, A. (1995) Guidance of oligodendrocytes and their progenitors by substratum topography. J. Cell Sci. 108, 2747–2760.

    PubMed  CAS  Google Scholar 

  74. Saneinejad, S. and Shoichet, M. S. (2000) Patterned poly(chlorotrifluoroethylene) guides primary nerve cell adhesion and neurite outgrowth. J. Biomed. Mater. Res. 50, 465–474.

    Article  PubMed  CAS  Google Scholar 

  75. Yang, F., Murugan, R., Wang, S., and Ramakrishna, S. (2005) Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 2603–2610.

    Article  PubMed  CAS  Google Scholar 

  76. Geiger, B., Bershadsky, A., Pankov, R., and Yamada, K. M. (2001) Transmembrane cross-talk between the extracellular matrix-cytoskeleton. Nat. Rev. Mol. Cell. Biol. 2, 793–805.

    Article  PubMed  CAS  Google Scholar 

  77. Hynes, R. O. (1999) The dynamic dialogue between cells and matrices: implications of fibronectin's elasticity. Proc. Natl. Acad. Sci. USA 96, 2588–2590.

    Article  PubMed  CAS  Google Scholar 

  78. Katsumi, A., Orr, A. W., Tzima, E., and Schwartz, M. A. (2004) Integrins in mechanotransduction. J. Biol. Chem. 279, 12001–12004.

    Article  PubMed  CAS  Google Scholar 

  79. Maheshwari, G., Brown, G., lauffenburger, D. A., Wells, A., and Griffith, L. G. (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113, 1677–1686.

    PubMed  CAS  Google Scholar 

  80. Kato, M. and Mrksich, M. (2004) The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochem 43, 15811–15821.

    Article  CAS  Google Scholar 

  81. Wang, H-B., Dembo, M., and Wang Y-L. (2000) Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279, C1345-C1350.

    PubMed  CAS  Google Scholar 

  82. Burridge, K. and Wennerberg, K. (2004) Rho and Rac take center stage. Cell 116, 167–179.

    Article  PubMed  CAS  Google Scholar 

  83. Nobes, C. D. and Hall, A. (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.

    Article  PubMed  CAS  Google Scholar 

  84. Etienne-Manneville, S. and Hall, A. (2002) Rho GTPases in cell biology, Nature 420, 629–635.

    Article  PubMed  CAS  Google Scholar 

  85. Bishop, A. L. and Hall, A. (2000) Rho GTPases and their effector proteins. Biochem. J. 348, 241–255.

    Article  PubMed  CAS  Google Scholar 

  86. DeMali, K. A., Burridge, K. (2003) Coupling membrane protrusion and cell adhesion. J. Cell Sci. 116, 2389–2397.

    Article  PubMed  CAS  Google Scholar 

  87. Connolly, J. O., Simpson, N., Hewlett, L., and Hall A. (2002) Rac regulates endothelial morphogenesis and capillary assembly. Mol. Biol. Cell 13, 2474–2485.

    Article  PubMed  CAS  Google Scholar 

  88. Sander, E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A., and Collard, J. G. (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1021.

    Article  PubMed  CAS  Google Scholar 

  89. Zhou, H. and Kramer, R. H. (2004) Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J. Biol. Chem. 205, 10624–10635.

    Google Scholar 

  90. Tsuji, T., Ishizaki, T., Okamoto, M., et al. (2002) ROCK and mDiaA1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. J. Cell Biol. 157, 819–830.

    Article  PubMed  CAS  Google Scholar 

  91. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., and Narumiya, S. (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1, 136–143.

    Article  PubMed  CAS  Google Scholar 

  92. Baneyx, G., Baugh, L., and Vogel, V., (2002) Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl. Acad. Sci. USA 99, 5139–5143.

    Article  PubMed  CAS  Google Scholar 

  93. Kale, S., Biermann, S., Edwards, C., Tarnowski, C., Morris, M., and Long, M. W. (2000) Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat. Biotech. 18, 954–958.

    Article  CAS  Google Scholar 

  94. Li, S., Lao, J., Chen, B. P. C., et al. (2003) Genomic analysis of smooth muscle cells in 3-dimensional collagen matrix. FASEB J. 17, 97–99.

    Article  PubMed  CAS  Google Scholar 

  95. Hanssen, E., Reinboth, B., and Gibson, M. A. (2003) Covalent and non-covalent interactions of betaig-h3 with collagen IV. Bet ig-h3 is covalently attached to the aminoterminal region of collagen IV in tissue microfibrils. J. Biol. Chem. 278, 24334–24441.

    Article  PubMed  CAS  Google Scholar 

  96. Hubbell, J. A. (2003) Materials as morphogenetic guides in tissue engineering. Curr. Opin. Biotech. 14, 551–558.

    Article  PubMed  CAS  Google Scholar 

  97. Szklarcyzk, A., Lapinkska, J., Rylski, M., McKay, R. D., and Kaczmarek, L. (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J. Neurosci. 22, 920–930.

    Google Scholar 

  98. Lemons, M. L., Sandy, J. D., Anderson, D. K., and Howland, D. R. (2003) Intact aggregan and chondroitin sulfate-depleted aggrecan core glycoprotein inhibit axon growth in the adult rat spinal cord. Exp. Neurol. 184, 981–990.

    Article  PubMed  CAS  Google Scholar 

  99. Genove, E., Shen, C., Zhang, S., and Semino, C. E. (2005) The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 26, 3341–3351.

    Article  PubMed  CAS  Google Scholar 

  100. Silva, G. A., Czeisler, C., Niece, K. L., Harrington, D., Kessler, J., and Stupp, S. I. (2004) Selective differentiation of neuronal progenitor cells by high epitope density nanofibers. Science 303, 1352–1355.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang, S., Holmes, T. C., DiPersio, C. M., Hynes, R. O., Su, X., and Rich, A. (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16, 1385–1393.

    Article  PubMed  Google Scholar 

  102. Ryadnov, M. G. and Woolfson, D. N. (2003) Engineering the morphology of a self-assembling protein fibre. Nat. Mater. 2, 329–332.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang, S. (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotech. 21, 1171–1177.

    Article  CAS  Google Scholar 

  104. Smith, L. A. and Ma, P. X. (2004) Nan-fibrous scaffolds for tissue engineering. Colloids Surfaces B: Biointerfaces 39, 125–131.

    CAS  Google Scholar 

  105. Chung, H. Y., Hal, J. R. B., Gogins, M. A., Crofoot, D. G., and Weik, T. M. (2004) Polymer, polymer microfiber, polymer nanofiber and applications including filter structures. US Patent No. 6,743,273 B2

  106. Doshi, J. and Reneker, G. L. (1995) Electrospinning process and applications of electrospun fibers. J. Electrost. 35, 151–160.

    Article  CAS  Google Scholar 

  107. Schindler, M., Ahmed, I., Nur-E-Kamal, A., et al. (2005) Synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials, 26, 5624–5631.

    Article  PubMed  CAS  Google Scholar 

  108. Nur-E-Kamal, A., Ahmed, I., Kamal, J., Schindler, M., and Meiners, S. (2005) Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem. Biophys. Res. Commun. 331, 428–34.

    Article  PubMed  CAS  Google Scholar 

  109. Li, W. J., Danielson, K. G., Alexander, P. G., and Tuan, R. S. (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J. Biomed. Mater. Res. 67A, 1105–1114.

    Article  CAS  Google Scholar 

  110. Yoshimoto, H., Shin, Y. M., Terai, H., and Vacanti, J. P. (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 12, 2077–2082.

    Article  CAS  Google Scholar 

  111. Boland, E. D., Matthews, J. A., Pawlowski, K. J., Simpson, D. G., Wnek, G. E., and Bowlin, G. L. (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front. Biosci. 9, 1422–1432.

    PubMed  CAS  Google Scholar 

  112. Li, M., Mondrinos, M. J., Gandhi, M. R., Ko, F. K., Weiss, A. S., and Lelkes, P. I. (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26, 5999–6008.

    Article  PubMed  CAS  Google Scholar 

  113. Stankus, J. J., Guan, J., and Wagner, W. R. (2004) Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J. Biomed. Mater. Res. 70A, 603–614.

    Article  CAS  Google Scholar 

  114. Lee, P. H., Trowbridge, J. M., Taylor, K. R., Morhenn, V. B., and Gallo, R. L. (2004) Dermatan sulfate proteoglycan and glycosaminoglycan synthesis is induced in fibroblasts by transfer to a three-dimensional extracellular environment. J. Biol. Chem. 279, 48640–48646.

    Article  PubMed  CAS  Google Scholar 

  115. Frondoza, C., Sohrabi, A., and Hungerford, D. (1996) Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 17, 879–888.

    Article  PubMed  CAS  Google Scholar 

  116. Overstreet, M., Sohrabi, A., Polotsky, A., Hungerford, D. S., and Frondoza, C. (2003) Collagen microcarrier spinner culture promotes osteoblast proliferation and synthesis of matrix proteins. In Vitro Cell. Dev. Biol. Anim. 39, 228–234.

    Article  PubMed  CAS  Google Scholar 

  117. Hayashi, S., Osawa, T., and Tohyama, K. (2002) Comparative observations on corneas, with special reference to Bowman's layer and Descemet's membrane in mammals and amphibians. J. Morphol. 254, 247–258.

    Article  PubMed  Google Scholar 

  118. Wolf, K., Muller, R., Borgmann, S., Brocker, E.-B., and Friedl, P. (2003) Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Meiners.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schindler, M., Nur-E-Kamal, A., Ahmed, I. et al. Living in three dimensions. Cell Biochem Biophys 45, 215–227 (2006). https://doi.org/10.1385/CBB:45:2:215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:2:215

Index Entries

Navigation