Skip to main content
Log in

Role of regulatory invariant CD1d-restricted natural killer T-cells in protection against type 1 diabetes

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Invariant CD1d-restricted natural killer T (iNKT) cells function during innate and adaptive immune responses. A functional and numerical deficiency of iNKT cells is well documented in both nonobese diabetic (NOD) mice and humans with autoimmune type 1 diabetes (T1D). Restoring the numerical and/or functional deficiency of iNKT cells in NOD mice by either treatment with α-galactosylceramide, transgenic induction of V α14-Jα18 expression, or transgenic expression of CD1d in NOD islets under the control of the human insulin promoter confers protection from T1D in these mice. Recently, considerable progress has been made in understanding the developmental and functional activities of iNKT cells. In this review, we discuss the role of iNKT cell deficiency and defective development in the onset of T1D in NOD mice and the different protective mechanisms known to restore these defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tisch R, McDevitt H: Insulin-dependent diabetes mellitus. Cell 1996;85:291–297.

    Article  PubMed  CAS  Google Scholar 

  2. Delovitch TL, Singh B: The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 1997;7:727–738.

    Article  PubMed  CAS  Google Scholar 

  3. Dahlen E, Dawe K, Ohlsson L, Hedlund G: Dendritic cells and macrophages are the first and major producers of TNF-α in pancreatic islets in the non obese diabetic mouse. J Immunol 1998;160:3585–3593.

    PubMed  CAS  Google Scholar 

  4. Fox CJ, Danska JS: Independent genetic regulation of T-cell and antigen-presenting cell participation in autoimmune islet inflammation. Diabetes 1998;47:331–338.

    Article  PubMed  CAS  Google Scholar 

  5. Hussain S, Salojin KV, Delovitch TL: Hyperresponsiveness, resistance to B-cell receptor-dependent activation-induced cell death, and accumulation of hyperactivated B cells in islets is associated with the onset of insulitis but not type 1 diabetes. Diabetes 2004; 53:2003–2011.

    Article  PubMed  CAS  Google Scholar 

  6. Mathis D, Vence L, Benoist C: Beta-cell death during progression to diabetes. Nature 2001;414:792–798.

    Article  PubMed  CAS  Google Scholar 

  7. Christianson SW, Shultz LD, Leiter EH: Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice: relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD. NON-Thy-Ia donors. Diabetes 1993;42:44–55.

    Article  PubMed  CAS  Google Scholar 

  8. Wicker LS, Leiter EH, Todd JA, Renjilian RJ, Peterson E, Fischer PA, Podolin PL, Zijlstra M, Jaenisch R, Peterson LB: Beta 2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes 1994; 43:500–504.

    Article  PubMed  CAS  Google Scholar 

  9. Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC: Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant. Diabetes 1994;43:505–509.

    Article  PubMed  CAS  Google Scholar 

  10. Atkinson MA, Leiter EH: The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999; 5:601–604.

    Article  PubMed  CAS  Google Scholar 

  11. Wu AJ, Hua H, Munson SH, McDevitt HO: Tumor necrosis factor-α regulation of CD4+ CD25+ T cell levels in NOD mice. Proc Natl Acad Sci USA 2002;99: 12,287–12,292.

    CAS  Google Scholar 

  12. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA: B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000;12:431–440.

    Article  PubMed  CAS  Google Scholar 

  13. Baxter AG, Kinder SJ, Hammond KJ, Scollay R, Godfrey DI: Association between αβ TCR+CD4CD8 T-cell deficiency and IDDM in NOD/L t mice. Diabetes 1997;46:572–582.

    Article  PubMed  CAS  Google Scholar 

  14. Hammond KJ, Pellicci DG, Poulton LD, Naidenko OV, Scalzo AA, Baxter AG, Godfrey DI: CD1d-restricted NKT cells: an inter-strain comparison. J Immunol 2001;167:1164–1173.

    PubMed  CAS  Google Scholar 

  15. Kukreja A, Costi G, Marker J, Zhang CH, Sinha S, Sun Z, Maclaren N: NKT cell defects in NOD mice suggest therapeutic opportunities. J Autoimmun 2002;19:117–128.

    Article  PubMed  Google Scholar 

  16. Laloux V, Beaudoin L, Ronet C, Lehuen A: Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes. J Immunol 2002;168:3251–3258.

    PubMed  CAS  Google Scholar 

  17. Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A, Naidenko OV, Sidobre S, Godfrey DI, Baxter AG: Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol 2003;171: 2873–2878.

    PubMed  CAS  Google Scholar 

  18. Yang Y, Bao M, Yoon JW: Intrinsic defects in the T-cell lineage results in natural killer T-cell deficiency and the development of diabetes in the nonobese diabetic mouse. Diabetes 2001;50:2691–2699.

    Article  PubMed  CAS  Google Scholar 

  19. Sharif S, Arreaza GA, Zucker P, et al.: Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 2001;7:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  20. Hong S, Wilson MT, Serizawa I, et al.: The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001;7:1052–1056.

    Article  PubMed  CAS  Google Scholar 

  21. Poulton LD, Smyth MJ, Hawke CG, Silveira P, Shepherd D, Naidenko OV, Godfrey DI, Baxter AG: Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int Immunol 2001;13:887–896.

    Article  PubMed  CAS  Google Scholar 

  22. Wang B, Geng YB, Wang CR: CD1-restricted NKT cells protect nonobese diabetic mice from developing diabetes. J Exp Med 2001;194:313–320.

    Article  PubMed  Google Scholar 

  23. Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y, Balk SB, Strominger JL, Clare-Salzer M, Wilson SB: Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 2001;98:13,838–13,843.

    Article  CAS  Google Scholar 

  24. Beaudoin L, Laloux V, Novak J, Lucas B, Lehuen A: NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 2002;17:725–736.

    Article  PubMed  CAS  Google Scholar 

  25. Falcone M, Facciotti F, Ghidoli N, Monti P, Olivieri S, Zaccagnino L, Bonifacio E, Casorati G, Sanvito F, Sarvetnick N: Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice. J Immunol 2004;172:5908–5916.

    PubMed  CAS  Google Scholar 

  26. Mi QS, Meagher C, Delovitch TL: CD1d-restricted NKT regulatory cells: functional genomic analyses provide new insights into the mechanisms of protection against Type 1 diabetes. Novartis Found Symp 2003;252:146–160.

    PubMed  CAS  Google Scholar 

  27. Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, Bendelac A, Bach JF, Monteiro RC: Overex pression of natural killer T cells protects Valpha14-Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med 1998;188:1831–1839.

    Article  PubMed  CAS  Google Scholar 

  28. Laloux V, Beaudoin L, Jeske D, Carnaud C, Lehuen A: NKT cell-induced protection against diabetes in V alpha 14-J alpha 281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J Immunol 2001;166:3749–3756.

    PubMed  CAS  Google Scholar 

  29. Hammond KJ, Poulton LD, Palmisano LJ, Silveira PA, Godfrey DI, Baxter AG: Alpha/beta-T cell receptor (TCR)+CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 1998;187:1047–1056.

    Article  PubMed  CAS  Google Scholar 

  30. Wilson SB, Delovitch TL: Janus-like role of regulatory iNKT cells in autoimmune disease and tumor immunity. Nat Rev Immunol 2003;3:211–222.

    Article  PubMed  CAS  Google Scholar 

  31. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB: Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 2003:4:1230–1237.

    Article  PubMed  CAS  Google Scholar 

  32. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H: The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003;21:483–513.

    Article  PubMed  CAS  Google Scholar 

  33. Fuji N, Ueda Y, Fujiwara H, Toh T, Yoshimura T, Yamagishi H: Antitumor effect of alpha-galactosylceramide (KRN7000) on spontaneous hepatic metastases requires endogenous interleukin 12 in the liver. Clin Cancer Res 2000;6:3380–3387.

    PubMed  CAS  Google Scholar 

  34. Giaccone G, Punt CJ, Ando Y, et al.: A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 2002;8:3702–3709.

    PubMed  CAS  Google Scholar 

  35. Taniguchi M, Seino K, Nakayama T: The NKT cell system: bridging innate and acquired immunity. Nat Immunol 2003;4:1164, 1165.

    Article  PubMed  CAS  Google Scholar 

  36. Sharif S, Arreaza GA, Zucker P, Mi QS, Delovitch TL: Regulation of autoimmune disease by natural killer T cells. J Mol Med 2002;80:290–300.

    Article  PubMed  CAS  Google Scholar 

  37. Gombert JM, Herbelin A, Tancrede-Bohin E, Dy M, Carnaud C, Bach JF: Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 1996;26:2989–2998.

    Article  PubMed  CAS  Google Scholar 

  38. Arreaza GA, Cameron MJ, Jaramillo A, et al.: Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL-4-dependent mechanism. J Clin Invest 1997;100:2243–2253.

    Article  PubMed  CAS  Google Scholar 

  39. Wilson SB, Kent SC, Patton KT, et al.: Extreme Th1 bias of invariant Valpha 24 J alpha Q T cells in type 1 diabetes. Nature 1998;391:177–181.

    Article  PubMed  CAS  Google Scholar 

  40. Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A: Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 2002;110:793–800.

    Article  PubMed  CAS  Google Scholar 

  41. Oikawa Y, Shimada A, Yamada S, Motohashi Y, Nakagawa Y, Irie J, Maruyama T, Saruta T: High frequency of valpha24(+) vbetal1(+) T-cells observed in type 1 diabetes. Diabetes Care 2002;25:1818–1823.

    Article  PubMed  Google Scholar 

  42. Oikawa Y, Shimada A, Yamada S, Motohashi Y, Nakagawa Y, Irie J, Maruyama T, Saruta T: NKT cell frequency in Japanese type 1 diabetes. Ann NY Acad Sci 2003;1005:230–232.

    Article  PubMed  Google Scholar 

  43. Berzins SP, Kyparissoudis K, Pellicci DG, Hammond KJ, Sidobre S, Baxter A, Smyth MJ, Kronenberg M, Godfrey DI: Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: implications for human studies. Immunol Cell Biol 2004;82:247–252.

    Article  PubMed  Google Scholar 

  44. Hammond KJ, Pelikan SB, Crowe NY, et al.: NKT cells are phenotypically and functionally diverse. Eur J Immunol 1999;29:3768–3781.

    Article  PubMed  CAS  Google Scholar 

  45. Kronenberg M, Gapin L: The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002;2:557–568.

    PubMed  CAS  Google Scholar 

  46. Ohteki T, Ho S, Suzuki H, Mak TW, Ohashi PS: Role for IL-15/IL-15 receptor beta-chain in natural killer 1.1+ T cell receptor-alpha beta+ cell development. J Immunol 1997;159:5931–5935.

    PubMed  CAS  Google Scholar 

  47. Voyle RB, Beermann F, Lees RK, Schumann J, Zimmer J, Held W, MacDonald HR: Ligand-dependent inhibition of CD1d-restricted NKT cell development in mice trans-genic for the activating receptor Ly49D. J Exp Med 2003;197:919–925.

    Article  PubMed  CAS  Google Scholar 

  48. Eberl G, Fehling HJ, von Boehmer H, MacDonald HR: Absolute requirement for the pre-T cell receptor alpha chain during NK1.1+TCRalphabeta cell development. Eur J Immunol 1999;29:1966–1971.

    Article  PubMed  CAS  Google Scholar 

  49. Xu Y, Davidson L, Alt FW, Baltimore D: Function of the pre-T-cell receptor alpha chain in T-cell development and allelic exclusion at the T-cell receptor beta locus. Proc Natl Acad Sci USA 1996;93:2169–2173.

    Article  PubMed  CAS  Google Scholar 

  50. Gapin L, Matsuda JL, Surh CD, Kronenberg M: NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2001;2:971–978.

    Article  PubMed  CAS  Google Scholar 

  51. Benlagha K, Kyin T, Beavis A, Teyton L., Bendelac A: A thymic precursor to the NKT cell lineage. Science 2002;296:553–555.

    Article  PubMed  CAS  Google Scholar 

  52. Chun T, Page MJ, Gapin L, et al: CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J Exp Med 2003;197:907–918.

    Article  PubMed  CAS  Google Scholar 

  53. Pellicci DG, Uldrich AP, Kyparissoudis K, Crowe NY, Brooks AG, Hammond KJ, Sidobre S, Kronenberg M, Smyth MJ, Godfrey DI: Intrathymic NKT cell development is blocked by the presence of alpha-galactosylceramide. Eur J Immunol 2003;33:1816–1823.

    Article  PubMed  CAS  Google Scholar 

  54. Shimamura M, Ohteki T, Beutner U, MacDonald HR: Lack of directed V alpha 14-J alpha 281 rearrangements in NK1+T cells. Eur J Immunol 1997;27:1576–1579.

    Article  PubMed  CAS  Google Scholar 

  55. Hammond K, Cain W, van Driel I, Goldfrey D: Three day neonatal thymectomy selectively depletes NK1.1+T cells. Int Immunol 1998;10:1491–1499.

    Article  PubMed  CAS  Google Scholar 

  56. Adkins B, Leclerc C, Marshall-Clarke S: Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004;4:553–564.

    Article  PubMed  CAS  Google Scholar 

  57. Thomas-Vaslin V, Damotte D, Coltey M, Le Dourain NM, Coutinho A, Salaun J: Abnormal T cell selection on nod thymic epithelium is sufficient to induce autoimmune manifestations in C57BL/6 athymic nude mice. Proc Natl Acad Sci USA 1997;94:4598–4603.

    Article  PubMed  CAS  Google Scholar 

  58. Kojo S, Tsutsumi A, Goto D, Sumida T: Low expression levels of soluble CD1d gene in patients with rheumatoid arthritis. J Rheumatol 2003;30:2524–2528.

    PubMed  CAS  Google Scholar 

  59. Araki M, Kondo T, Gumperz JE, Brenner MB, Miyake S, Yamamura T: Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 2003;15:279–288.

    Article  PubMed  CAS  Google Scholar 

  60. Shi FD, Flodstrom M, Balasa B, Kim SH, Van Gunst K, Strominger JL, Wilson SB, Sarvetnick N: Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci USA 2001;98:6777–6782.

    Article  PubMed  CAS  Google Scholar 

  61. Rapoport MJ, Jaramillo A, Zipris D, Lazarus, AH, Serreze DV, Leiter EH, Cyopick P, Danska JS, Delovitch TL: Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med 1993;178:87–99.

    Article  PubMed  CAS  Google Scholar 

  62. Cameron MJ, Arreaza GA, Zucker P, Chensue SW, Strieter RM, Chakrabarti S, Delovitch TL: IL-4 prevents insulitis and insulin-dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J Immunol 1997;159:4686–4692.

    PubMed  CAS  Google Scholar 

  63. Cameron MJ, Strathdee CA, Holmes KD, Arreaza GA, Dekaban GA, Delovitch TL: Biolistic-mediated interleukin 4 gene transfer prevents the onset of type 1 diabetes. Hum Gene Ther 2000;11:1647–1656.

    Article  PubMed  CAS  Google Scholar 

  64. Mi QS, Ly D, Zucker P, McGarry M, Delovitch TL: Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells. Diabetes 2004;53:1303–1310.

    Article  PubMed  CAS  Google Scholar 

  65. Pulendran B, Lingappa J, Kennedy MK, Smigh J, Teepe M, Rudensky A, Maliszewski CR, Maraskovsky E: Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol 1997;159:2222–2231.

    PubMed  CAS  Google Scholar 

  66. Sonoda KH, Stein-Streilein J: CD1d on antigen-transporting APC and spelinic marginal zone B cells promotes NKT cell-dependent tolerance/Eur J Immunol 2002;32: 848–857.

    Article  PubMed  CAS  Google Scholar 

  67. Sonoda KH, Faunce DE, Taniguchi M, Exley M, Balk S, Stein-Streilein J: NKT cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J Immunol 2001;166:42–50.

    PubMed  CAS  Google Scholar 

  68. Mauri C, Gray D, Mushtaq N, Londei M: Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 2003;197:489–501.

    Article  PubMed  CAS  Google Scholar 

  69. Den Haan JM, Lehar SM, Bevan MJ: CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 2000;192:1685–1696.

    Article  Google Scholar 

  70. Feili-Hariri M, Dong X, Alber SM, Watkins SC, Salter RD, Morel PA: Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes 1999;48: 2300–2308.

    Article  PubMed  CAS  Google Scholar 

  71. Cameron MJ, Arreaza GA, Grattan M, Meagher C, Sharif S, Burdick MD, Strieter RM, Cook DN, Delovitch TL: Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. J Immunol 2000;165:1102–1110.

    PubMed  CAS  Google Scholar 

  72. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG: B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2001;2:1126–1132.

    Article  PubMed  CAS  Google Scholar 

  73. Cruikshank WW, Kornfeld H, Center DM: Interleukin-16. J Leukoc Biol 2000;67:757–766.

    PubMed  CAS  Google Scholar 

  74. Kaser A, Dunzendorfer S, Offner FA, Ludwiczek O, Enrich B, Koch RO, Cruikshank WW, Wiedermann CJ, Tilg H; B lymphocyte-derived IL-16 attracts dendritic cells and Th cells. J Immunol 2000;165:2474–2480.

    PubMed  CAS  Google Scholar 

  75. Lynch EA, Heijens CA, Horst NF, Center DM, Cruikshank WW: Cutting edge: IL-16/CD4 preferentially induces Th1 cell migration: requirement of CCR5. J Immunol 2003;171:4965–4968.

    PubMed  CAS  Google Scholar 

  76. Mashikian MV, Ryan TC, Seman A, Brazer W, Center DM, Cruikshank WW. Reciprocal desensitization of CCR5 and CD4 is mediated by IL-16 and macrophage-inflammatory protein-1 beta, respectively. J Immunol 1999;163:3123–3130.

    PubMed  CAS  Google Scholar 

  77. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA: A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996;184:1101–1109.

    Article  PubMed  CAS  Google Scholar 

  78. Matin K, Salam MA, Akhter J, Hanada N, Senpuku H: Role of stromal-cell derived factor-1 in the development of autoimmune diseases in non-obese diabetic mice. Immunology 2002;107:222–232.

    Article  PubMed  CAS  Google Scholar 

  79. King C, Ilic A, Koelsch K, Sarvetnick N: Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 2004;117:265–277.

    Article  PubMed  CAS  Google Scholar 

  80. Silveira PA, Dombrowsky J, Johnson E, Chapman HD, Nemazee D, Serreze DV: B cell selection defects underlie the development of diabetogenic APCs in nonobese diabetic mice. J Immunol 2004;172:5086–5094.

    PubMed  CAS  Google Scholar 

  81. Serreze DV, Gaedeke JW, Leiter EH: Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C. Proc Natl Acad Sci USA 1993;90:9625–9629.

    Article  PubMed  CAS  Google Scholar 

  82. Serreze DV, Gaskins HR, Leiter EH: Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol 1993;150:2534–2543.

    PubMed  CAS  Google Scholar 

  83. Strid J, Lopes L, Marcinkiewicz J, Petrovska L, Nowak B, Chain BM, Lund T: A defect in bone marrow derived dendritic cell maturation in the nonobese diabetic mouse. Clin Exp Immunol 2001;123:375–381.

    Article  PubMed  CAS  Google Scholar 

  84. Lee M, Kim AY, Kang Y: Defects in the differentiation and function of bone marrow-derived dendritic cells in non-obese diabetic mice. J Korean Med Sci 2000;15: 217–223.

    PubMed  CAS  Google Scholar 

  85. Vasquez AC, Feili-Hariri M, Tan RJ, Morel PA, Qualitative and quantitative abnormalities in splenic dendritic cell populations in NOD mice. Clin Exp Immunol 2004;135:209–218.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry L. Delovitch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, S., Wagner, M., Ly, D. et al. Role of regulatory invariant CD1d-restricted natural killer T-cells in protection against type 1 diabetes. Immunol Res 31, 177–188 (2005). https://doi.org/10.1385/IR:31:3:177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:31:3:177

Key Words

Navigation