Skip to main content
Log in

Oligomers of D2 dopamine receptors

Evidence from ligand binding

  • Short Review
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

There is increasing evidence that G protein-coupled receptors form oligomers and that this might be important for their function. We have studied this phenomenon for the D2 dopamine receptor and have shown—using a variety of biochemical and biophysical techniques—that this receptor forms dimers or higher-order oligomers. Using ligand-binding studies, we have also found evidence that this oligomer formation has functional relevance. Thus, for the receptor expressed in either CHO cells or Sf 9 insect cells, the binding properties of several radioligands (in saturation, competition, and dissociation assays) do not conform to those expected for a monomeric receptor with a single binding site. We propose that the receptors exist in oligomers with homotropic and heterotropic negatively cooperative interactions between ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angers S., Salahpour A., and Bouvier M. (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D. and Strange P. G. (2001) Dopamine D2 receptor dimer formation: evidence from ligand binding. J. Biol. Chem. 276, 22621–22629.

    Article  PubMed  CAS  Google Scholar 

  • Bray D. and Duke T. (2004) Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct. 33, 53–73.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee T. K., Scott C. E., Vazquez D. M., and Bhatnagar R. K. (1988) Interaction of [3H]spiperone with rat striatal dopamine D-2 receptors: kinetic evidence for antagonist-induced formation of ternary complex. Mol. Pharmacol. 33, 402–413.

    PubMed  CAS  Google Scholar 

  • Cordeaux Y., Nickolls S. A., Flood L. A., Graber S. G., and Strange P. G. (2001) Agonist regulation of D(2) dopamine receptor/G protein interaction. Evidence for agonist selection of G protein subtype. J. Biol. Chem. 276, 28667–28675.

    Article  PubMed  CAS  Google Scholar 

  • Cox M. A., Jenh C. H., Gonsiorek W., Fine J., Narula S. K., Zavodny P. J., and Hipkin R. W. (2001) Human interferon-inducible 10-kDa protein and human interferon-inducible T cell alpha chemoattractant are allotopic ligands for human CXCR3: differential binding to receptor states. Mol. Pharmacol. 59, 707–715.

    PubMed  CAS  Google Scholar 

  • Devi L. A. (2001) Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol. Sci. 22, 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Duthey B., Caudron S., Perroy J., Bettler B., Fagni L., Pin J. P., and Prezeau L. (2002) A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J. Biol. Chem. 277, 3236–3241.

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis D., Liang Y., Filipek S., Saperstein D. A., Engel A., and Palczewski K. (2004) The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett. 564, 281–288.

    Article  PubMed  CAS  Google Scholar 

  • Franco R., Casado V., Ciruela F., Mallol J., Lluis C., and Canela E. I. (1996) The cluster-arranged cooperative model: a model that accounts for the kinetics of binding to A1 adenosine receptors. Biochemistry 35, 3007–3015.

    Article  PubMed  CAS  Google Scholar 

  • Gazi L., Lopez-Gimenez J. F., and Strange P. G. (2002) Formation of oligomers by G protein-coupled receptors. Curr. Opin. Drug Discov. Dev. 5, 756–763.

    CAS  Google Scholar 

  • Gazi L., Lopez-Gimenez J. F., Rudiger M. P., and Strange P. G. (2003a) Constitutive oligomerization of human D2 dopamine receptors expressed in Spodoptera frugiperda 9 (Sf9) and in HEK293 cells. Analysis using co-immunoprecipitation and time-resolved fluorescence resonance energy transfer. Eur. J. Biochem. 270, 3928–3938.

    Article  PubMed  CAS  Google Scholar 

  • Gazi L., Wurch T., Lopez-Gimenez J. F., Pauwels P. J., and Strange P. G. (2003b) Pharmacological analysis of a dopamine D(2Short):G((o) fusion protein expressed in Sf9 cells. FEBS Lett. 545, 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Hall H., Wedel I., Halldin C., Kopp J., and Farde L. (1990) Comparison of the in vitro receptor binding properties of N-[3H]methylspiperone and [3H]raclopride to rat and human brain membranes. J. Neurochem. 55, 2048–2057.

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg B. T. and Schimerlik M. I. (1994) A kinetic model for oxotremorine M binding to recombinant porcine m2 muscarinic receptors expressed in Chinese hamster ovary cells. J. Biol. Chem. 269, 26127–26135.

    PubMed  CAS  Google Scholar 

  • Limbird L. E. and Lefkowitz R. J. (1976) Negative cooperativity among beta-adrenergic receptors in frog erythrocyte membranes. J. Biol. Chem. 251, 5007–5014.

    PubMed  CAS  Google Scholar 

  • Malmberg A., Jerning E., and Mohell N. (1996) Critical reevaluation of spiperone and benzamide binding to dopamine D2 receptors: evidence for identical binding sites. Eur. J. Pharmacol. 303, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Mattera R., Pitts B. J., Entman M. L., and Birnbaumer L. (1985) Guanine nucleotide regulation of a mammalian myocardial muscarinic receptor system. Evidence for homo- and heterotropic cooperativity in ligand binding analyzed by computer-assisted curve fitting. J. Biol. Chem. 260, 7410–7421.

    PubMed  CAS  Google Scholar 

  • Ng G. Y., O’Dowd B. F., Caron M., Dennis M., Brann M. R., and George S. R. (1994) Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J. Neurochem. 63, 1589–1595.

    Article  PubMed  CAS  Google Scholar 

  • Nickolls S. A. and Strange P. G. (2003) Interaction of the D2short dopamine receptor with G proteins: analysis of receptor/G protein selectivity. Biochem. Pharmacol. 65, 1139–1150.

    Article  PubMed  CAS  Google Scholar 

  • Park P. S. and Wells J. W. (2004) Oligomeric potential of the M2 muscarinic cholinergic receptor. J. Neurochem. 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  • Park P. S., Sum C. S., Pawagi A. B., and Wells J. W. (2002) Cooperativity and oligomeric status of cardiac muscarinic cholinergic receptors. Biochemistry 41, 5588–5604.

    Article  PubMed  CAS  Google Scholar 

  • Salahpour A., Bonin H., Bhalla S., Petaja-Repo U., and Bouvier M. (2003) Biochemical characterization of beta2-adrenergic receptor dimers and oligomers. Biol. Chem. 384, 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Seeman P., Guan H. C., Civelli O., Van Tol H. H., Sunahara R. K., and Niznik H. B. (1992) The cloned dopamine D2 receptor reveals different densities for dopamine receptor antagonist ligands. Implications for human brain positron emission tomography. Eur. J. Pharmacol. 227, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Sourjik V. and Berg H. C. (2004) Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441.

    Article  PubMed  CAS  Google Scholar 

  • Sum C. S., Pyo N., and Wells J. W. (2001) Apparent capacity of cardiac muscarinic receptors for different radiolabeled antagonists. Biochem. Pharmacol. 62, 829–851.

    Article  PubMed  CAS  Google Scholar 

  • Terai M., Hidaka K., and Nakamura Y. (1989) Comparison of [3H]YM-09151-2 with [3H]spiperone and [3H]raclopride for dopamine d-2 receptor binding to rat striatum. Eur. J. Pharmacol. 173, 177–182.

    CAS  Google Scholar 

  • Theodorou A. E., Jenner P., and Marsden C. D. (1983) Cation specificity of 3H-sulpiride binding involves alteration in the number of striatal binding sites. Life Sci. 32, 1243–1254.

    Article  PubMed  CAS  Google Scholar 

  • Vile J. M., D’Souza U. M., and Strange P. G. (1995) [3H]Nemonapride and [3H]spiperone label equivalent numbers of D2 and D3 dopamine receptors in a range of tissues and under different conditions. J. Neurochem. 64, 940–943.

    Article  PubMed  CAS  Google Scholar 

  • Vivo M. and Strange P. G. (2003a) Effect of sodium ions on ligand bindig to the D2short dopamine receptor. Br. J. Pharmacol. Abstr. 1, 69P.

    Google Scholar 

  • Vivo M. and Strange P. G. (2003b) Effect of sodium ions on [3H]nemonapride dissociation from the D2short dopamine receptor. Br. J. Pharmacol. Abstr. 1, 171P.

    Google Scholar 

  • Wreggett K. A. and Wells J. W. (1995) Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J. Biol. Chem. 270, 22488–22499.

    Article  PubMed  CAS  Google Scholar 

  • Wurch T., Matsumoto A. and Pauwels P. J. (2001) Agonist-independent and -dependent oligomerization of dopamine D(2) receptors by fusion to fluorescent proteins. FEBS Lett. 507, 109–113.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G. Strange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strange, P.G. Oligomers of D2 dopamine receptors. J Mol Neurosci 26, 155–160 (2005). https://doi.org/10.1385/JMN:26:2-3:155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:26:2-3:155

Index Entries

Navigation