Skip to main content
Log in

Polyphenols in cerebral ischemia

Novel targets for neuroprotection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Plant polyphenols are dietary components that exert a variety of biochemical and pharmacological effects. Recently, considerable interest has been focused on polyphenols because of their antioxidant, anti-inflammatory, and antiproliferative activities. Oxidative stress is thought to be a key event in the pathogenesis of cerebral ischemia. Overproduction of reactive oxygen species during ischemia/reperfusion could cause an imbalance between oxidative and antioxidative processes. Reactive oxygen species can damage lipids, proteins, and nucleic acids, thereby inducing apoptosis or necrosis. There is increasing evidence supporting the hypothesis that plant polyphenols can provide protection against neurodegenerative changes associated with cerebral ischemia. This article reviews the neuroprotective effects of plant extracts and their constituents that have been used in animal models of cerebral ischemia. The use of polyphenols as therapeutic agents in stroke has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bronner L.L., Kanter D.S., and Manson J.E. (1995) Primary prevention of stroke. N. Engl. J. Med. 333, 1392–1400.

    Article  PubMed  CAS  Google Scholar 

  2. De Freitas G.R. and Bogousslavsky J. (2001) Primary stroke prevention. Eur. J. Neurol. 8, 1–15.

    Article  PubMed  Google Scholar 

  3. Traystman R.J. (2003) Animal models of focal and global cerebral ischemia. Ilar. J. 44, 85–95.

    PubMed  CAS  Google Scholar 

  4. Dirnagl U., Iadecola C., and Moskowitz M.A. (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397.

    Article  PubMed  CAS  Google Scholar 

  5. Chan P.H. (1996) Role of oxidants in ischemic brain damage. Stroke 27, 1124–1129.

    PubMed  CAS  Google Scholar 

  6. Hara H., Sukamoto T., and Kogure K. (1993) Mechanism and pathogenesis of ischemiainduced neuronal damage. Prog. Neurobiol. 40, 645–670.

    Article  PubMed  CAS  Google Scholar 

  7. Chan P.H. (1994) Oxygen radicals in focal cerebral ischemia. Brain Pathol. 4, 59–65.

    Article  PubMed  CAS  Google Scholar 

  8. Kuroda S. and Siesjo B.K. (1997) Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin. Neurosci. 4, 199–212.

    PubMed  CAS  Google Scholar 

  9. Crews F.T., Steck J.C., Chandler L.J., et al. (1998) Ethanol, stroke, brain damage, and excitotoxicity. Pharmacol. Biochem. Behav. 59, 981–991.

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura T., Minamisawa H., Katayama Y., et al. (1999) Increased intracellular Ca2+concentration in the hippocampal CA1 area during global ischemia and reperfusion in the rat: a possible cause of delayed neuronal death. Neuroscience 88, 57–67.

    Article  PubMed  CAS  Google Scholar 

  11. Chan P.H. (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21, 2–14.

    Article  PubMed  CAS  Google Scholar 

  12. Gilgun-Sherki Y., Rosenbaum Z., Melamed E., et al. (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol. Rev. 54, 271–284.

    Article  PubMed  CAS  Google Scholar 

  13. Bravo L. (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56, 317–333.

    Article  PubMed  CAS  Google Scholar 

  14. Rice-Evans C.A., Miller N.J., Bolwell P.G., et al. (1995) The relative antioxidant activities of plantderived polyphenolic flavonoids. Free Radical Res. 22, 375–383.

    CAS  Google Scholar 

  15. Rice-Evans C.A., Miller J., and Paganga G. (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152–159.

    Article  Google Scholar 

  16. Sun A.Y. and Chen Y.M. (1998) Oxidative stress and neurodegenerative disorders. J. Biomed. Sci. 5, 401–414.

    Article  PubMed  CAS  Google Scholar 

  17. Renaud S. and de Lorgeril M. (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339, 1523–1526.

    Article  PubMed  CAS  Google Scholar 

  18. Acheson R.M. and Williams D.R. (1983) Does consumption of fruit and vegetables protect against stroke? Lancet 1, 1191–1193.

    Article  PubMed  CAS  Google Scholar 

  19. Vollset S.E. and Bjelke E. (1983) Does consumption of fruit and vegetables protect against stroke? Lancet 2, 742.

    Article  PubMed  CAS  Google Scholar 

  20. Joshipura K.J., Ascherio A., Manson J.E., et al. (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 282, 1233–1239.

    Article  PubMed  CAS  Google Scholar 

  21. Youdim K.A. and Joseph J.A. (2001) A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radical Biol. Med. 30, 583–594.

    Article  CAS  Google Scholar 

  22. Bastianetto S. and Quirion R. (2002) Natural extracts as possible protective agents of brain aging. Neurobiol. Aging 23, 891–897.

    Article  PubMed  CAS  Google Scholar 

  23. Sun A.Y., Simonyi A., and Sun G.Y. (2002) The “French Paradox” and beyond: neuroprotective effects of polyphenols. Free Radical Biol. Med. 32, 314–318.

    Article  CAS  Google Scholar 

  24. Ross J.A. and Kasum C.M. (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22, 19–34.

    Article  PubMed  CAS  Google Scholar 

  25. Manach C., Scalbert A., Morand C., et al. (2004) Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 727–747.

    PubMed  CAS  Google Scholar 

  26. Korkina L.G. and Afanas’ev I.B. (1997) Antioxidant and chelating properties of flavonoids. Adv. Pharmacol. 38, 151–163.

    PubMed  CAS  Google Scholar 

  27. Nijveldt R.J., van Nood E., van Hoorn D.E., et al. (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74, 418–425.

    PubMed  CAS  Google Scholar 

  28. Esposito E., Rotilio D., Di Matteo V., et al. (2002) A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol. Aging 23, 719–735.

    Article  PubMed  CAS  Google Scholar 

  29. Achike F.I. and Kwan C.Y. (2003) Nitric oxide, human diseases and the herbal products that affect the nitric oxide signalling pathway. Clin. Exp. Pharmacol. Physiol. 30, 605–615.

    Article  PubMed  CAS  Google Scholar 

  30. Williams R.J., Spencer J.P., and Rice-Evans C. (2004) Flavonoids: antioxidants or signalling molecules? Free Radical Biol. Med. 36, 838–849.

    Article  CAS  Google Scholar 

  31. Skibola C.F. and Smith M.T. (2000) Potential health impacts of excessive flavonoid intake. Free Radical Biol. Med. 29, 375–383.

    Article  CAS  Google Scholar 

  32. Walle T. (2004) Absorption and metabolism of flavonoids. Free Radical Biol. Med. 36, 829–837.

    Article  CAS  Google Scholar 

  33. Graham H.N. (1992) Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 21, 334–350.

    Article  PubMed  CAS  Google Scholar 

  34. Dufresne C.J. and Farnworth E.R. (2001) A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem. 12, 404–421.

    Article  PubMed  CAS  Google Scholar 

  35. Higdon J.V. and Frei B. (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43, 89–143.

    Article  PubMed  CAS  Google Scholar 

  36. Mandel S., Weinreb O., Amit T., et al. (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J. Neurochem. 88, 1555–1569.

    Article  PubMed  CAS  Google Scholar 

  37. Sato Y., Nakatsuka H., Watanabe T., et al. (1989) Possible contribution of green tea drinking habits to the prevention of stroke. Tohoku J. Exp. Med. 157, 337–343.

    Article  PubMed  CAS  Google Scholar 

  38. Arts I.C., Hollman P.C., Feskens E.J., et al. (2001) Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am. J. Clin. Nutr. 74, 227–232.

    PubMed  CAS  Google Scholar 

  39. Matsuoka Y., Hasegawa H., Okuda S., et al. (1995) Ameliorative effects of tea catechins on active oxygen-related nerve cell injuries. J. Pharmacol. Exp. Ther. 274, 602–608.

    PubMed  CAS  Google Scholar 

  40. Inanami O., Watanabe Y., Syuto B., et al. (1998) Oral administration of (-)catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radical Res. 29, 359–365.

    Article  CAS  Google Scholar 

  41. Lee S., Suh S. and Kim S. (2000) Protective effects of the green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci. Lett. 287, 191–194.

    Article  PubMed  CAS  Google Scholar 

  42. Lee S.Y., Kim C.Y., Lee J.J., et al. (2003) Effects of delayed administration of (-)-epigallocatechin gallate, a green tea polyphenol on the changes in polyamine levels and neuronal damage after transient forebrain ischemia in gerbils. Brain Res. Bull. 61, 399–406.

    Article  PubMed  CAS  Google Scholar 

  43. Hong J.T., Ryu S.R., Kim H.J., et al. (2001) Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Res. 888, 11–18.

    Article  PubMed  CAS  Google Scholar 

  44. Dajas F., Rivera F., Blasina F., et al. (2003) Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox. Res. 5, 425–432.

    Article  PubMed  Google Scholar 

  45. Soleas G.J., Diamandis E.P., and Goldberg D.M. (1997) Wine as a biological fluid: history, production, and role in disease prevention. J. Clin. Lab. Anal. 11, 287–313.

    Article  PubMed  CAS  Google Scholar 

  46. Wolter F. and Stein J. (2002) Biological activities of resveratrol and its analogs. Drugs Future 27, 949–959.

    Article  CAS  Google Scholar 

  47. Pervaiz S. (2003) Resveratrol: from grapevines to mammalian biology. FASEB J. 17, 1975–1985.

    Article  PubMed  CAS  Google Scholar 

  48. Huang S.S., Tsai M.C., Chih C.L., et al. (2001) Resveratrol reduction of infarct size in Long-Evans rats subjected to focal cerebral ischemia. Life Sci. 69, 1057–1065.

    Article  PubMed  CAS  Google Scholar 

  49. Sinha K., Chaudhary G., and Gupta Y.K. (2002) Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci. 71, 655–665.

    Article  PubMed  CAS  Google Scholar 

  50. Inoue H., Jiang X.F., Katayama T., et al. (2003) Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferatoractivated receptor alpha in mice. Neurosci. Lett. 352, 203–206.

    Article  PubMed  CAS  Google Scholar 

  51. Wang Q., Xu J., Rottinghaus G.E., et al. (2002) Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. 958, 439–447.

    Article  PubMed  CAS  Google Scholar 

  52. Wang Q., Simonyi A., MacDonald R.S., et al. (2004) Dietary supplementation of grape extract protects against ischemia-induced neural injury. J. Neurochem. 88(Suppl. 1), 41.

    Google Scholar 

  53. Shutenko Z., Henry Y., Pinard E., et al. (1999) Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem. Pharmacol. 57, 199–208.

    Article  PubMed  CAS  Google Scholar 

  54. Bagchi D., Garg A., Krohn R.L., et al. (1998) Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen. Pharmacol. 30, 771–776.

    PubMed  CAS  Google Scholar 

  55. Defeudis F.V. (2002) Bilobalide and neuroprotection. Pharmacol. Res. 46, 565–568.

    Article  PubMed  CAS  Google Scholar 

  56. Diamond B.J., Shiflett S.C., Feiwel N., et al. (2000) Ginkgo biloba extract: mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 81, 668–678.

    PubMed  CAS  Google Scholar 

  57. Biber A. (2003) Pharmacokinetics of Ginkgo biloba extracts. Pharmacopsychiatry. 36 (Suppl. 1), S32-S37.

    PubMed  CAS  Google Scholar 

  58. Ahlemeyer B. and Krieglstein J. (2003) Neuroprotective effects of Ginkgo biloba extract. Cell. Mol. Life Sci. 60, 1779–1792.

    Article  PubMed  CAS  Google Scholar 

  59. Spinnewyn B. (1992) Ginkgo biloba extract (EGb 761) protects against delayed neuronal death in gerbil, in Effects of Ginkgo Biloba (EGB 761) on the Central Nervous System, Christen Y., Costentin J., and Lacour M., eds., Elsevier, Paris, pp, 113–118.

    Google Scholar 

  60. Calapai G., Crupi A., Firenzuoli F., et al. (2000) Neuroprotective effects of Ginkgo biloba extract in brain ischemia are mediated by inhibition of nitric oxide synthesis. Life Sci. 67, 2673–2683.

    Article  PubMed  CAS  Google Scholar 

  61. Pierre S., Jamme I., Droy-Lefaix M.T., et al. (1999) Ginkgo biloba extract (EGb 761) protects Na,K-ATPase activity during cerebral ischemia in mice. Neuroreport 10, 47–51.

    Article  PubMed  CAS  Google Scholar 

  62. Clark W.M., Rinker L.G., Lessov N.S., et al. (2001) Efficacy of antioxidant therapies in trasient focal ischemia in mice. Stroke 32, 1000–1004.

    PubMed  CAS  Google Scholar 

  63. Unal I., Gursoy-Ozdemir Y., Bolay H., et al. (2001) Chronic daily administration of selegiline and EGb 761 increases brain’s resistance to ischemia in mice. Brain Res. 917, 174–181.

    Article  PubMed  CAS  Google Scholar 

  64. Lee E.J., Chen H.Y., Wu T.S., et al. (2002) Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague-Dawley rats. J. Neurosci. Res. 68, 636–645.

    Article  PubMed  CAS  Google Scholar 

  65. Ahlemeyer B. and Krieglstein J. (2003) Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer’s disease. Pharmacopsychiatry. 36 (Suppl. 1), S8-S14.

    PubMed  CAS  Google Scholar 

  66. Chandrasekaran K., Mehrabian Z., Spinnewyn B., et al. (2001) Neuroprotective effects of bilobalide, a component of the Ginkgo biloba extract (EGb 761), in gerbil global brain ischemia. Brain Res. 922, 282–292.

    Article  PubMed  CAS  Google Scholar 

  67. Ahlemeyer B., Junker V., Huhne R., et al. (2001) Neuroprotective effects of NV-31, a bilobalidederived compound: evidence for an antioxidative mechanism. Brain Res. 890, 338–342.

    Article  PubMed  CAS  Google Scholar 

  68. Cooper T.H., Clark G., and Guzinski J. (1994) Teas, spices and herbs. Food Phytochem. 1, 231–236.

    Google Scholar 

  69. Ammon H.P. and Wahl M.A. (1991) Pharmacology of Curcuma longa. Planta Med. 57, 1–7.

    Article  PubMed  CAS  Google Scholar 

  70. Garcea G., Jones D.J., Singh R., et al. (2004) Detection of curcumin and its metabolithepatic d hepatic tissue and portal blood of patients following oral administration. Br. J. Cancer 90, 1011–1015.

    Article  PubMed  CAS  Google Scholar 

  71. Sreejayan and Rao M.N. (1997) Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol. 49, 105–107.

    PubMed  CAS  Google Scholar 

  72. Khopde S.M., Priyadarsini K.I., Venkatesan P., et al. (1999) Free radical scavenging ability and antioxidant efficiency of curcumin and its substituted analogue. Biophys. Chem. 80, 85–91.

    Article  CAS  Google Scholar 

  73. Priyadarsini K.I., Maity D.K., Naik G.H., et al. (2003) Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biol. Med. 35, 475–484.

    Article  CAS  Google Scholar 

  74. Singh S. and Aggarwal B.B. (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J. Biol. Chem. 270, 24,995–25,000.

    Article  CAS  Google Scholar 

  75. Arbiser J.L., Klauber N., Rohan R., et al. (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol. Med. 4, 376–383.

    PubMed  CAS  Google Scholar 

  76. Howes M.J. and Houghton P.J. (2003) Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol. Biochem. Behav. 75, 513–527.

    Article  PubMed  CAS  Google Scholar 

  77. Ghoneim A.I., Abdel-Naim A.B., Khalifa A.E., et al. (2002) Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol. Res. 46, 273–279.

    Article  PubMed  CAS  Google Scholar 

  78. Thiyagarajan M. and Sharma S.S. (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 74, 969–985.

    Article  PubMed  CAS  Google Scholar 

  79. Wang Q Jenson M., Simonyi A., et al. (2004) Curcumin protects against delayed neuronal death-induced by global ischemia/reperfusion in gerbils. J. Neurochem. 88 (Suppl. 1), 39.

    Google Scholar 

  80. Chen Y.C., Shen S.C., Chen L.G., et al. (2001) Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem. Pharmacol. 61, 1417–1427.

    Article  PubMed  CAS  Google Scholar 

  81. Chi Y.S., Cheon B.S., and Kim H.P. (2001) Effect of wogonin, a plant flavone from Scutellaria radix, on the suppression of cyclooxygenase-2 and the induction of inducible nitric oxide synthase in lipopolysaccharide-treated RAW 264.7 cells. Biochem. Pharmacol. 61, 1195–1203.

    Article  PubMed  CAS  Google Scholar 

  82. Lee H., Kim Y.O., Kim H., et al. (2003) Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J. 17, 1943–1944.

    PubMed  CAS  Google Scholar 

  83. Trieu V.N., Dong Y., Zheng Y., et al. (1999) In vivo antioxidant activity of genistein in a murine model of singlet oxygen-induced cerebral stroke. Radiat. Res. 152, 508–516.

    Article  PubMed  CAS  Google Scholar 

  84. Kindy M.S. (1993) Inhibition of tyrosine phosphorylation prevents delayed neuronal death following cerebral ischemia. J. Cereb. Blood Flow Metab. 13, 372–377.

    PubMed  CAS  Google Scholar 

  85. Lee B., Choi Y., Kim H., et al. (2003) Protective effects of methanol extract of Acori graminei rhizoma and Uncariae Ramulus et Uncus on ischemia-induced neuronal death and cognitive impairments in the rat. Life Sci. 74, 435–450.

    Article  PubMed  CAS  Google Scholar 

  86. Sweeney M.I., Kalt W., MacKinnon S.L., et al. (2002) Feeding rats diets enriched in lowbush blueberries for six weeks decreases ischemia-induced brain damage. Nutr. Neurosci. 5, 427–431.

    Article  PubMed  CAS  Google Scholar 

  87. Pu F., Mishima K., Egashira N., et al. (2004) Protective effect of buckwheat polyphenols against long-lasting impairment of spatial memory associated with hippocampal neuronal damage in rats subjected to repeated cerebral ischemia. J. Pharmacol. Sci. 94, 393–402.

    Article  PubMed  CAS  Google Scholar 

  88. Backhauss C. and Krieglstein J. (1992) Extract of kava (Piper methysticum) and its methysticin constituents protect brain tissue against ischemic damage in rodents. Eur. J. Pharmacol. 215, 265–269.

    Article  PubMed  CAS  Google Scholar 

  89. Wen T.C., Yoshimura H., Matsuda S., et al. (1996) Ginseng root prevents learning disability and neuronal loss in gerbils with 5-minute fore-brain ischemia. Acta Neuropathol. (Berl.) 91, 15–22.

    Article  CAS  Google Scholar 

  90. Lim J.H., Wen T.C., Matsuda S., et al. (1997) Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci. Res. 28, 191–200.

    Article  PubMed  CAS  Google Scholar 

  91. Shen L. and Zhang J. (2003) Ginsenoside Rg1 increases ischemia-induced cell proliferation and survival in the dentate gyrus of adult gerbils. Neurosci. Lett. 344, 1–4.

    Article  PubMed  CAS  Google Scholar 

  92. Wang Z., Du Q Wang F., et al. (2004) Microarray analysis of gene expression on herbal glycoside recipes improving deficient ability of spatial learning memory in ischemic mice. J. Neurochem. 88, 1406–1415.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Simonyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonyi, A., Wang, Q., Miller, R.L. et al. Polyphenols in cerebral ischemia. Mol Neurobiol 31, 135–147 (2005). https://doi.org/10.1385/MN:31:1-3:135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:31:1-3:135

Index Entries

Navigation