Skip to main content
Log in

The cerefy brain atlases

Continuous enhancement of the electronic talairach-tournoux brain atlas

  • News Item
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The Talairach-Tournoux (TT) atlas is probably the most often used brain atlas. We overview briefly the activities in developments of electronic versions of the TT atlas and focus on our more than 10-yr efforts in its continuous enhancement resulting in three main versions: TT-1997, TT-2000, and TT-2004. The recent TT-2004 version is substantially improved over the digitized print original with a higher structure parcellation, better quality and resolution of individual structures, and improved three-dimensional (3D) spatial consistency. It is also much more suitable for developing atlas-based applications owing to pure color-coding (for automatic structure labeling), contour representation (to avoid scan blocking by the overlaid atlas), and color cross-atlas consistency (for the simultaneous use of multiple atlases). We also provide a procedure for 3D spatial consistency improvement and illustrate its use. Finally, we present some of our latest atlas-assisted applications for fast and automatic interpretation of morphological, stroke, and molecular images, and discuss the future steps in TT atlas enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barillot, C., Gibaud, B., Montabord, E., Garlatti, S., Gauthier, N., and Kanellos, I. (1994) An information system to manage anatomical knowledge and image data about brain, in Proceedings of the Visualization in Biomedical Computing VBC’94, Mayo Clinic, Rochester, USA, October 4–7, 1994, SPIE, Vol. 2359, pp. 424–434.

    Google Scholar 

  • Drury, H. A. and Van Essen, D. C. (1996) A surface reconstruction and cortical flat map of the visible human linked to the Talairach atlas. NeuroImage 3, S114.

  • Lancaster, J. L., Woldorff, M. G., Parsons, L. M., et al. (2000) Automated Talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10 (3), 120–131.

    Article  CAS  Google Scholar 

  • Maldjian, J.A., Laurienti, P.J., and Burdette, J.H. (2004) Precentral gyrus discrepancy in electronic versions of the Talairach atlas. NeuroImage 21 (1), 450–455.

    Article  Google Scholar 

  • Mueller, K., Welsh, T., Zhu, W., Meade, J., and Volkow, N. (2000) BrainMiner: a visualization tool for ROI-based discovery of functional relationships in the humanbrain, in Proceedings of the New Paradigms in Information Visualization and Manipulation NPIVM 2000, Washington, DC, November, 2000; http://www.cs.sunysb.edu/~mueller/research/brainMiner/

  • Nowinski, W. L. (2001) Computerized brain atlases for surgery of movement disorders. Semin. Neurosurg. 12 (2), 183–194.

    Article  Google Scholar 

  • Nowinski, W. L. (2002) Electronic brain atlases: features and applications, in 3D image processing: techniques and clinical applications, Medical radiology series, Caramella, D. and Bartolozzi, C., eds., Springer-Verlag, Berlin, pp. 79–93.

    Google Scholar 

  • Nowinski, W. L. (2003) From research to clinical practice: a Cerefy brain atlas story, in Proceedings of the Computer Assisted Radiology and Surgery CARS 2003, 17th International Congress and Exhibition, June 25–28, 2003, London, UK, International Congress Series 1256, pp. 75–81.

  • Nowinski, W. L. and Belov, D. (2003) The Cerefy neuroradiology atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the Internet. NeuroImage 20 (1), 50–57.

    Article  Google Scholar 

  • Nowinski, W. L., Bryan, R. N., and Raghavan, R. (1997a) The electronic clinical brain atlas. Multiplanar navigation of the human brain, Thieme, New York.

    Google Scholar 

  • Nowinski, W. L., Fang, A., Nguyen, B. T., et al. (1997b) Multiple brain atlas database and atlas-based neuroimaging system. Comput. Aided Surg. 2 (1), 42–66.

    Article  CAS  Google Scholar 

  • Nowinski, W. L., Hu, Q., Bhanu Prakash, K. N., et al. (2005a) Atlas-assisted analysis of brain scans, in Book of Abstracts, European Congress of Radiology ECR 2005, March 4–8, 2005, Vienna, Austria, European Radiology, Suppl. 1 to Vol. 15, February 2005, p. 572.

  • Nowinski, W. L., Hu, Q., Bhanu Prakash, K. N., Qian, G., Thirunavuukarasuu, A., and Aziz, A. (2004) Automatic interpretation of normal brain scans, in Program 90th Radiological Society of North America Scientific Assembly and Annual Meeting RSNA 2004, Chicago, USA, November 28–December 3, 2004, p. 710.

  • Nowinski, W. L. and Thirunavuukarasuu, A. (2001) Atlas-assisted localization analysis of functional images. Med. Image Anal. 5 (3), 207–220.

    Article  CAS  Google Scholar 

  • Nowinski, W. L. and Thirunavuukarasuu, A. (2004) The Cerefy clinical brain atlas on CD-ROM, Thieme, New York.

    Google Scholar 

  • Nowinski, W. L., Thirunavuukarasuu, A., and Benabid, A. L. (2005b) The Cerefy clinical brain atlas. Extended edition with surgery planning and intraoperative support, Thieme, New York.

    Google Scholar 

  • Nowinski, W. L., Thirunavuukarasuu, A., and Kennedy, D. N. (2000) Brain atlas for functional imaging. Clinical and research applications, Thieme, New York.

    Google Scholar 

  • Nowinski, W. L., Thirunavuukarasuu, A., Volkau, I., Baimuratov, R., Hu, Q., Aziz, A., and Huang, S. (2005c) Three-dimensional atlas of the brain anatomy and vasculature. Radiographics 25 (1), 263–271.

    Article  Google Scholar 

  • Schiemann, T., Hoehne, K. H., Koch, C., Pommert, A., Riemer, M., Schubert, R., and Tiede, U. (1994) Interpretation of tomographic images using automatic atlas lookup, in Proceedings of the Visualization in Biomedical Computing VBC’94, Mayo Clinic, Rochester, USA, October 4–7, 1994, SPIE, Vol. 2359, pp. 457–465.

    Google Scholar 

  • Steinmetz, H., Furst, G., and Freund, H. J. (1989) Cerebral cortical localization: application and validation of the proportional grid system in MR imaging. J. Comput. Assist. Tomogr. 13 (1), 10–19.

    Article  CAS  Google Scholar 

  • Talairach, J. and Tournoux, P. (1988) Co-planar stereotactic atlas of the human brain, Thieme, Stuttgart.

    Google Scholar 

  • Talairach, J. and Tournoux, P. (1993) Referentially oriented cerebral MRI anatomy. Atlas of stereotaxic anatomical correlations for gray and white matter, Georg Thieme Verlag/Thieme Medical Publishers, Stuttgart/New York.

    Google Scholar 

  • Thompson, P. M., Hayashi, K. M., Sowell, E. R., et al. (2004) Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. NeuroImage 23 (suppl 1), S2-S18.

    Article  Google Scholar 

  • Toga, A.W. and Mazziotta, J.C., eds. (2002) Brain mapping. The methods, 2nd ed., Academic, San Diego.

    Google Scholar 

  • Wagner, H., von Wangenheim, A., Trevisol-Bittencourt, P. C., von Wangenheim, C. G., and Krechel, D. (2001) A digital deformable anisotropic brain atlas based on the Talairach atlas and recursive spatial data structures, in Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems CMBS’01, March 26–27, 2001, Bethesda, MD, pp. 36–41.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowinski, W.L. The cerefy brain atlases. Neuroinform 3, 293–300 (2005). https://doi.org/10.1385/NI:3:4:293

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:3:4:293

Index Entries

Navigation