Skip to main content
Log in

Class II G protein-coupled receptors and their ligands in neuronal function and protection

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs-adenylate cyclase-cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer’s, Parkinson’s, and Huntington’s diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelhorst K., Hedegaard B. B., Knudsen L. B., and Kirk O. (1994) Structure-activity studies of glucagon-like peptide-1. J. Biol. Chem. 269, 6275–6278.

    PubMed  CAS  Google Scholar 

  • Aiyar N., Daines R. A., Disa J., et al. (2001) Pharmacology of sb-273779, a nonpeptide calcitonin generelated peptide 1 receptor antagonist. J. Pharmacol. Exp. Ther. 296, 768–775.

    PubMed  CAS  Google Scholar 

  • Aiyar N., Rand K., Elshourbagy N. A., et al. (1996) A cDNA encoding the calcitonin gene-related peptide type 1 receptor. J. Biol. Chem. 271, 11,325–11,329.

    CAS  Google Scholar 

  • Aldecoa A., Gujer R., Fischer J. A., and Born W. (2000) Mammalian calcitonin receptor-like receptor/receptor activity modifying protein complexes define calcitonin gene-related peptide and adrenomedullin receptors in drosophila schneider 2 cells. FEBS Lett. 471, 156–160.

    PubMed  CAS  Google Scholar 

  • Al-Sabah S. and Donnelly D. (2003) A model for receptor-peptide binding at the glucagon-like peptide-1 (GLP-1) receptor through the analysis of truncated ligands and receptors. Br. J. Pharmacol. 140, 339–346.

    PubMed  CAS  Google Scholar 

  • Amara S. G., Jonas V., Rosenfeld M. G., Ong E. S., and Evans R. M. (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244.

    PubMed  CAS  Google Scholar 

  • Baetens D., Rufener C., Srikant B. C., Dobbs R., Unger R., and Orci L. (1976) Identification of glucagon-producing cells (A cells) in dog gastric mucosa. J. Cell Biol. 69, 455–464.

    PubMed  CAS  Google Scholar 

  • Banks W. A., Goulet M., Rusche J. R., Niehoff M. L., and Boismenu R. (2002) Differential transport of a secretin analog across the blood-brain and blood-cerebrospinal fluid barriers of the mouse. J. Pharmacol. Exp. Ther. 302, 1062–1069.

    PubMed  CAS  Google Scholar 

  • Barragan J. M., Eng J., Rodriguez R., and Blazquez E. (1999) Neural contribution to the effect of glucagon-like peptide-1-(7–36) amide on arterial blood pressure in rats. Am. J. Physiol. 277, E784–791.

    PubMed  CAS  Google Scholar 

  • Barzilai A. and Melamed E. (2003) Molecular mechanisms of selective dopaminergic neuronal death in Parkinson’s disease. Trends Mol. Med. 9, 126–132.

    PubMed  CAS  Google Scholar 

  • Bassan M., Zamostiano R., Davidson A., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.

    PubMed  CAS  Google Scholar 

  • Baum J., Simons B. E., Jr., Unger R. H., and Madison L. L. (1962) Localization of glucagon in the alpha cells in the pancreatic islet by immunofluorescent techniques. Diabetes 11, 371–374.

    PubMed  CAS  Google Scholar 

  • Bazarsuren A., Grauschopf U., Wozny M., et al. (2002) In vitro folding, functional characterization, and disulfide pattern of the extracellular domain of human GLP-1 receptor. Biophys. Chem. 96, 305–318.

    PubMed  CAS  Google Scholar 

  • Beaumont K., Pittner R. A., Moore C. X., et al. (1995) Regulation of muscle glycogen metabolism by CGRP and amylin: CGRP receptors not involved. Br. J. Pharmacol. 115, 713–715.

    PubMed  CAS  Google Scholar 

  • Behan D. P., Grigoriadis D. E., Lovenberg T., et al. (1996) Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders. Mol. Psychiatry. 1, 265–277.

    PubMed  CAS  Google Scholar 

  • Berelowitz M., Szabo M., Frohman L. A., Firestone S., Chu L., and Hintz R. L. (1981) Somatomedin-C mediates growth hormone negative feedback by effects on both the hypothalamus and the pituitary. Science, 212, 1279–1281.

    PubMed  CAS  Google Scholar 

  • Bergwitz C., Gardella T. J., Flannery M. R., et al. (1996) Full activation of chimeric receptors by hybrids between parathyroid hormone and calcitonin. Evidence for a common pattern of ligand-receptor interaction. J. Biol. Chem. 271, 26,469–26,472.

    CAS  Google Scholar 

  • Besson J., Sarrieau A., Vial M., Marie J. C., Rosselin G., and Rostene W. (1986) Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Res. 398, 329–336.

    PubMed  CAS  Google Scholar 

  • Bissette G., Reynolds G. P., Kilts C. D., Widerlov E., and Nemeroff C. B. (1985) Corticotropin-releasing factor-like immunoreactivity in senile dementia of the Alzheimer type. Reduced cortical and striatal concentrations. JAMA 254, 3067–3069.

    PubMed  CAS  Google Scholar 

  • Blondel O., Collin C., McCarran W. J., et al. (2000). A glia-derived signal regulating neuronal differentiation. J. Neurosci. 20, 8012–8020.

    PubMed  CAS  Google Scholar 

  • Brenneman D. E. and Eiden L. E. (1986). Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc. Natl. Acad. Sci. USA 83, 1159–1162.

    PubMed  CAS  Google Scholar 

  • Brines M. L., Ling Z., and Broadus A. E. (1999) Parathyroid hormone-related protein protects against kainic acid excitotoxicity in rat cerebellar granule cells by regulating L-type channel calcium flux. Neurosci. Lett. 274, 13–16.

    PubMed  CAS  Google Scholar 

  • Bruijn L. I., Miller T. M., and Cleveland D. W. (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749.

    PubMed  CAS  Google Scholar 

  • Buggy J. J., Livingston J. N., Rabin D. U., and Yoo-Warren H. (1995) Glucagon-glucagon-like peptide I receptor chimeras reveal domains that determine specificity of glucagon binding. J. Biol. Chem. 270, 7474–7478.

    PubMed  CAS  Google Scholar 

  • Buhlmann N., Leuthauser K., Muff R., Fischer J. A., and Born W. (1999) A receptor activity modifying protein (ramp)2-dependent adrenomedullin receptor is a calcitonin gene-related peptide receptor when coexpressed with human ramp1. Endocrinology 140, 2883–2890.

    PubMed  CAS  Google Scholar 

  • Burton P. B., Moniz C., and Knight D. E. (1990) Parathyroid hormone related peptide can function as an autocrine growth factor in human renal cell carcinoma. Biochem. Biophys. Res. Commun. 167, 1134–1138.

    PubMed  CAS  Google Scholar 

  • Canonico P. L., Cronin M. J., Thorner M. O., and Macleod R. M. (1983). Human pancreatic GRF stimulates phosphatidylinositol labeling in cultured anterior pituitary cells. Am. J. Physiol. 245, E587-E590.

    PubMed  CAS  Google Scholar 

  • Cavallaro S., Copani A., D’agata V., et al. (1996) Pituitary adenylate cyclase activating polypeptide prevents apoptosis in cultured cerebellar granule neurons. Mol. Pharmacol. 50, 60–66.

    PubMed  CAS  Google Scholar 

  • Chen R., Lewis K. A., Perrin M. H., and Vale W. W. (1993). Expression cloning of a human corticotropin-releasing-factor receptor. Proc. Natl. Acad. Sci. USA 90, 8967–8971.

    PubMed  CAS  Google Scholar 

  • Chen W. J., Armour S., Way J., et al. (1997) Expression cloning and receptor pharmacology of human calcitonin receptors from mcf-7 cells and their relationship to amylin receptors. Mol. Pharmacol. 52, 1164–1175.

    PubMed  CAS  Google Scholar 

  • Cheng B. and Mattson M. P. (1992) IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J. Neurosci. 12, 1558–1566.

    PubMed  CAS  Google Scholar 

  • Chiba T., Hashimoto Y., Tajima H., et al. (2004) Neuroprotective effect of activity-dependent neurotrophic factor against toxicity from familial amyotrophic lateral sclerosis-linked mutant SOD1 in vitro and in vivo. J. Neurosci. Res. 78, 542–552.

    PubMed  CAS  Google Scholar 

  • Chow B. K. (1997) Functional antagonism of the human secretin receptor by a recombinant protein encoding the N-terminal ectodomain of the receptor. Recept. Signal Transduct. 7, 143–150.

    PubMed  CAS  Google Scholar 

  • Christopoulos A., Christopoulos G., Morfis M., et al. (2003) Novel receptor partners and function of receptor activity-modifying proteins. J. Biol. Chem. 278, 3293–3297.

    PubMed  CAS  Google Scholar 

  • Christopoulos G., Perry K. J., Morfis M., et al. (1999) Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 56, 235–242.

    PubMed  CAS  Google Scholar 

  • Clemens T. L., Cormier S., Eichinger A., et al. (2001) Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br. J. Pharmacol. 134, 1113–1136.

    PubMed  CAS  Google Scholar 

  • Coniglio S. J., Lewis J. D., Lang C., et al. (2001). A randomized, double-blind, placebo-controlled trial of single-dose intravenous secretin as treatment for children with autism. J. Pediatr. 138, 649–655.

    PubMed  CAS  Google Scholar 

  • Cooper G. J., Willis A. C., Clark A., Turner R. C., Sim R. B., and Reid K. B. (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA 84, 8628–8632.

    PubMed  CAS  Google Scholar 

  • Coste S. C., Kesterson R. A., Heldwein K. A., et al. (2000) Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat. Genet. 24, 403–409.

    PubMed  CAS  Google Scholar 

  • Dautzenberg F. M., Mevenkamp G., Wille S., and Hauger R. L. (1999) N-terminal splice variants of the type I PACAP receptor: isolation, characterization and ligand binding/selectivity determinants. J. Neuroendocrinol. 11, 941–949.

    PubMed  CAS  Google Scholar 

  • DeLecea L., Kilduff T. S., Peyron C., et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95, 322–327.

    CAS  Google Scholar 

  • Delgado M., Pozo D., Martinez C., et al. (1999) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit endotoxin-induced TNF-alpha production by macrophages: in vitro and in vivo studies. J. Immunol. 162, 2358–2367.

    PubMed  CAS  Google Scholar 

  • Di Angelantonio S., Costa V., Carloni P., Messori L., and Nistri A. (2002) A novel class of peptides with facilitating action on neuronal nicotinic receptors of rat chromaffin cells in vitro: Functional and molecular dynamics studies. Mol. Pharmacol. 61, 43–54.

    PubMed  Google Scholar 

  • Dias M. S. (2004) Traumatic brain and spinal cord injury. Pediatr. Clin. North Am. 51, 271–303.

    PubMed  Google Scholar 

  • Dogan A., Suzuki Y., Koketsu N., et al. (1997) Intravenous infusion of adrenomedullin and increase in regional cerebral blood flow and prevention of ischemic brain injury after middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab. 17, 19–25.

    PubMed  CAS  Google Scholar 

  • Drucker D., Bataille D., Göke B., Mayo K., Miller L., and Thorens B. (2000) Glucagon receptor family. In The IUPHAR Compendium of Receptor Characterization and Classification, 2nd edition. London, UK: IUPHAR Media.

    Google Scholar 

  • Drucker D. J. (1998). Glucagon-like peptides. Diabetes, 47, 159–169.

    PubMed  CAS  Google Scholar 

  • Drucker D. J. (2003). Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161–171.

    PubMed  CAS  Google Scholar 

  • Drouot X., Moutereau S., Nguyen J. P., et al. (2003) Low levels of ventricular CSF orexin/hypocretin in advanced PD. Neurology 61, 540–543.

    PubMed  CAS  Google Scholar 

  • Dunbar M. E., Dann P. R., Robinson G. W., Hennighausen L., Zhang J. P., and Wysolmerski J. J. (1999) Parathyroid hormone-related protein signaling is necessary for sexual dimorphism during embryonic mammary development. Development 126, 3485–3493.

    PubMed  CAS  Google Scholar 

  • Dunn A. J. and Berridge C. W. (1990) Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res. Brain Res. Rev. 15, 71–100.

    PubMed  CAS  Google Scholar 

  • Dunn-Geier J., Ho H. H., Auersperg E., et al. (2000) Effect of secretin on children with autism: a randomized controlled trial. Dev. Med. Child Neurol. 42, 796–802.

    PubMed  CAS  Google Scholar 

  • Dunphy J. L., Taylor R. G., and Fuller P. J. (1998). Tissue distribution of rat glucagon receptor and GLP-1 receptor gene expression. Mol. Cell. Endocrinol. 141, 179–186.

    PubMed  CAS  Google Scholar 

  • Eichinger A., Fiaschi-Taesch. N., Massfelder T., Fritsch, S., Barthelmebs M., and Helwig J. J. (2002) Transcript expression of the tuberoinfundibular peptide (TIP)39/PTH2 receptor system and non-PTH1 receptor-mediated tonic effects of TIP39 and other PTH2 receptor ligands in renal vessels. Endocrinology 143, 3036–3043.

    PubMed  CAS  Google Scholar 

  • Elliott-Hunt C. R., Kazlauskaite J., Wilde G. J., Grammatopoulos D. K., and Hillhouse E. W. (2002) Potential signalling pathways underlying corticotrophin-releasing hormone-mediated neuroprotection from excitotoxicity in rat hippocampus. J. Neurochem. 80, 416–425.

    PubMed  CAS  Google Scholar 

  • Escobar D. C., Vicentini L. M., Ghigo E., et al. (1986) Growth hormone-releasing factor does not stimulate phosphoinositides breakdown in primary cultures of rat and human pituitary cells. Acta. Endocrinol. (Copenh) 112, 345–350.

    CAS  Google Scholar 

  • Facci L., Stevens D. A., Pangallo M., Franceschini D., Skaper S. D., and Strijbos P. J. (2003) Corticotropin-releasing factor (CRF) and related peptides confer neuroprotection via type 1 CRF receptors. Neuropharmacology 45, 623–636.

    PubMed  CAS  Google Scholar 

  • Foord S. M., Wise A., Brown J., Main M. J., and Fraser N. J. (1999) The N-terminus of RAMPs is a critical determinant of the glycosylation state and ligand binding of calcitonin receptor-like receptor. Biochem. Soc. Trans. 27, 535–539.

    PubMed  CAS  Google Scholar 

  • Fraser N. J., Wise A., Brown J., Mclatchie L. M., Main M. J., and Foord S. M. (1999) The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol. Pharmacol. 55, 1054–1059.

    PubMed  CAS  Google Scholar 

  • Fremeau R. T., Jr., Jensen R. T., Charlton C. G., Miller R. L., O’donohue T. L., and Moody T. W. (1983) Secretin: specific binding to rat brain membranes. J. Neurosci. 3, 1620–1625.

    PubMed  CAS  Google Scholar 

  • French M. B., Lussier B. T., Moor B. C., and Kraicer J. (1990) Effect of growth hormone-releasing factor on phosphoinositide hydrolysis in somatotrophs. Mol. Cell. Endocrinol. 72, 221–226.

    PubMed  CAS  Google Scholar 

  • Frimurer T. M. and Bywater R. P. (1999) Structure of the integral membrane domain of the GLP1 receptor. Proteins 35, 375–386.

    PubMed  CAS  Google Scholar 

  • Frohman M. A., Downs T. R., Chomczynski P., and Frohman L. A. (1989) Cloning and characterization of mouse growth hormone-releasing hormone (GRH) complementary DNA: increased GRH messenger RNA levels in the growth hormone-deficient lit/lit mouse. Mol. Endocrinol. 3, 1529–1536.

    PubMed  CAS  Google Scholar 

  • Gardella T. J. and Juppner H. (2001) Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol. Metab. 12, 210–217.

    PubMed  CAS  Google Scholar 

  • Gasparini L. and Xu H. (2003) Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci. 26, 404–406.

    PubMed  CAS  Google Scholar 

  • Gaudin P., Rouyer-Fessard C., Couvineau A., Maoret J. J., and Laburthe M. (1998) Constitutive activation of the human VIP1 receptor. Ann. N. Y. Acad. Sci. 865, 382–385.

    PubMed  CAS  Google Scholar 

  • Gaylinn B. D., Harrison J. K., Zysk J. R., Lyons C. E., Lynch K. R., and Thorner M. O. (1993) Molecular cloning and expression of a human anterior pituitary receptor for growth hormone-releasing hormone. Mol. Endocrinol. 7, 77–84.

    PubMed  CAS  Google Scholar 

  • Gebre-Medhin S., Mulder H., Pekny M., et al. (1998) Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem. Biophys. Res. Commun. 250, 271–277.

    PubMed  CAS  Google Scholar 

  • Gebre-Medhin S., Mulder H., Zhang Y., Sundler F., and Betsholtz C. (1998) Reduced nociceptive behavior in islet amyloid polypeptide (amylin) knockout mice. Brain Res. Mol. Brain Res. 63, 180–183.

    PubMed  CAS  Google Scholar 

  • Gelling R. W., Wheeler M. B., Xue J., et al. (1997) Localization of the domains involved in ligand binding and activation of the glucose-dependent insulinotropic polypeptide receptor. Endocrinology 138, 2640–2643.

    PubMed  CAS  Google Scholar 

  • Gilman C. P., Perry T., Furukawa K., Greig N. H., Egan, J. M., and Mattson M. P. (2003) Glucagon-like peptide 1 modulates calcium responses to glutamate and membrane depolarization in hippocampal neurons. J. Neurochem. 87, 1137–1144.

    PubMed  CAS  Google Scholar 

  • Glazner G. W., Boland A., Dresse A. E., Brenneman D. E., Gozes I., and Mattson M. P. (1999) Activity-dependent neurotrophic factor peptide (ADNF9) protects neurons against oxidative stress-induced death. J. Neurochem. 73, 2341–2347.

    PubMed  CAS  Google Scholar 

  • Goke R., Larsen P. J., Mikkelsen J. D., and Sheikh S. P. (1995) Identification of specific binding sites for glucagon-like peptide-1 on the posterior lobe of the rat pituitary. Neuroendocrinology 62, 130–134.

    PubMed  CAS  Google Scholar 

  • Gonzalez B. J., Basille M., Mei Y. A., et al. (1996) Ontogeny of PACAP and PACAP receptors in the rat brain: role of PACAP in the cerebellum during development. Ann. N. Y. Acad. Sci. 805, 302–313.

    PubMed  CAS  Google Scholar 

  • Gonzalez B. J., Basille M., Vaudry D., Fournier A., and Vaudry H. (1997) Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience 78, 419–430.

    PubMed  CAS  Google Scholar 

  • Goodyer C. G., De Stephano L., Lai W. H., Guyda H. J., and Posner B. I. (1984) Characterization of insulin-like growth factor receptors in rat anterior pituitary, hypothalamus, and brain. Endocrinology 114, 1187–1195.

    PubMed  CAS  Google Scholar 

  • Goulet M., Shiromani P. J., Ware C. M., Strong R. A., Boismenu R., and Rusche J. R. (2003) A secretin i.v. infusion activates gene expression in the central amygdala of rats. Neuroscience 118, 881–888.

    PubMed  CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (2000). A new concept in the pharmacology of neuroprotection. J. Mol. Neurosci. 14, 61–68.

    PubMed  CAS  Google Scholar 

  • Gozes I., Divinsky I., Pilzer I., Fridkin M., Brenneman D. E., and Spier A. D. (2003) From vasoactive intestinal peptide (VIP) through activity-dependent neuroprotective protein (ADNP) to NAP: a view of neuroprotection and cell division. J. Mol. Neurosci. 20, 315–322.

    PubMed  CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (1989) VIP: molecular biology and neurobiological function. Mol. Neurobiol. 3, 201–236.

    PubMed  CAS  Google Scholar 

  • Grauschopf U., Lilie H., Honold K., et al. (2000) The N-terminal fragment of human parathyroid hormone receptor 1 constitutes a hormone binding domain and reveals a distinct disulfide pattern. Biochemistry 39, 8878–8887.

    PubMed  CAS  Google Scholar 

  • Grinevich V., Fournier A., and Pelletier G. (1997) Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on corticotropin-releasing hormone (CRH) gene expression in the rat hypothalamic paraventricular nucleus. Brain Res. 773, 190–196.

    PubMed  CAS  Google Scholar 

  • Guan J., Miller O. T., Waugh K. M., McCarthy D. C., and Gluckman P. D. (2001) Insulin-like growth factor-1 improves somatosensory function and reduces the extent of cortical infarction and ongoing neuronal loss after hypoxia-ischemia in rats. Neuroscience 105, 299–306.

    PubMed  CAS  Google Scholar 

  • Guo J., Iida-Klein A., Huang X., Abou-Samra A. B., Segre G. V., and Bringhurst F. R. (1995) Parathyroid hormone (PTH)/PTH-related peptide receptor density modulates activation of phospholipase C and phosphate transport by PTH in LLC-PK1 cells. Endocrinology 136, 3884–3891.

    PubMed  CAS  Google Scholar 

  • Guo Q., Sebastian L., Sopher B. L., et al. (1999). Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc. Natl. Acad. Sci. USA 96, 4125–4130.

    PubMed  CAS  Google Scholar 

  • Gutzwiller J. P., Drewe J., Goke B., et al. (1999) Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physiol. 276, R1541–1544.

    PubMed  CAS  Google Scholar 

  • Hallbrink M., Holmqvist T., Olsson M., Ostenson C. G., Efendic S., and Langel U. (2001) Different domains in the third intracellular loop of the GLP-1 receptor are responsible for Galpha(s) and Galpha(i)/Galpha(o) activation. Biochem. Biophys. Acta. 1546, 79–86.

    PubMed  CAS  Google Scholar 

  • Hannibal J., Jamen F., Nielsen H. S., Journot L., Brabet P., and Fahrenkrug J. (2001) Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J. Neurosci. 21, 4883–4890.

    PubMed  CAS  Google Scholar 

  • Hansen L. H., Gromada J., Bouchelouche P., et al. (1998) Glucagon-mediated Ca2+ signaling in BHK cells expressing cloned human glucagon receptors. Am. J. Physiol. 274, C1552–1562.

    PubMed  CAS  Google Scholar 

  • Harmar A. J. (2001) Family-BG protein-coupled receptors. Genome Biol. 2, 3013.1

    Google Scholar 

  • Harvey S. and Hayer S. (1993) Parathyroid hormone binding sites in the brain. Peptides 14, 1187–1191.

    PubMed  CAS  Google Scholar 

  • Hashimoto M., Rockenstein E., Crews L., and Masliah E. (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med. 4, 21–36.

    PubMed  CAS  Google Scholar 

  • Heraud C., Hilairet S., Muller J. M., Leterrier J. F., and Chadeneau C. (2004) Neuritogenesis induced by vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, and peptide histidine methionine in SH-SY5y cells is associated with regulated expression of cytoskeleton mRNAs and proteins. J. Neurosci. Res. 75, 320–329.

    PubMed  CAS  Google Scholar 

  • Heuser I. J., Baronti F., Marin C. A., et al. (1992) Growth hormone secretion in Alzheimer’s disease: 24-hour profile of basal levels and response to stimulation and suppression studies. Neurobiol. Ageing 13, 255–260.

    CAS  Google Scholar 

  • Hilairet S., Belanger C., Bertrand J., Laperriere A., Foord S. M., and Bouvier M. (2001) Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta-arrestin. J. Biol. Chem. 276, 42,182–42,190.

    CAS  Google Scholar 

  • Hirasawa T., Nakamura T., Mizushima A., et al. (2000) Adverse effects of an active fragment of parathyroid hormone on rat hippocampal organotypic cultures. Br. J. Pharmacol. 129, 21–28.

    PubMed  CAS  Google Scholar 

  • Hjorth S. A., Adelhorst K., Pedersen B. B., Kirk O., and Schwartz T. W. (1994) Glucagon and glucagon-like peptide 1: selective receptor recognition via distinct peptide epitopes. J. Biol. Chem. 269, 30,121–30,124.

    CAS  Google Scholar 

  • Hjorth S. A., Orskov C., and Schwartz T. W. (1998) Constitutive activity of glucagon receptor mutants. Mol. Endocrinol. 12, 78–86

    PubMed  CAS  Google Scholar 

  • Holl R. W., Thorner M. O., and Leong D. A. (1988) Intracellular calcium concentration and growth hormone secretion in individual somatotropes: effects of growth hormone-releasing factor and somatostatin. Endocrinology 122, 2927–2932.

    PubMed  CAS  Google Scholar 

  • Holsboer F. and Barden, N. (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr. Rev. 17, 187–205.

    PubMed  CAS  Google Scholar 

  • Holt E. H., Broadus A. E., and Brines M. L. (1996) Parathyroid hormone-related peptide is produced by cultured cerebellar granule cells in response to L-type voltage-sensitive Ca2+ channel flux via a Ca2+/calmodulin-dependent kinase pathway. J. Biol. Chem. 271, 28,105–28,111.

    CAS  Google Scholar 

  • Holtmann M. H., Ganguli S., Hadac E. M., Dolu V., and Miller L. J. (1996) Multiple extracellular loop domains contribute critical determinants for agonist binding and activation of the secretin receptor. J. Biol. Chem. 271, 14,944–14,949.

    CAS  Google Scholar 

  • Holz G. G., Leech C. A., Heller R. S., Castonguay M., and Habener J. F. (1999) cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7–37). J. Biol. Chem. 274, 14,147–14,156.

    CAS  Google Scholar 

  • Hoosein N. M. and Gurd R. S. (1984). Human glucagon-like peptides 1 and 2 activate rat brain adenylate cyclase. FEBS Lett. 178, 83–86.

    PubMed  CAS  Google Scholar 

  • Hoppener J. W., Ahren B., and Lips C. J. (2000) Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med. 343, 411–419.

    PubMed  CAS  Google Scholar 

  • Horvath K., Stefanatos G., Sokolski K. N., Wachtel, R., Nabors L., and Tildon J. T. (1998) Improved social and language skills after secretin administration in patients with autistic spectrum disorders. J. Assoc. Acad. Minor. Phys. 9, 9–15.

    PubMed  CAS  Google Scholar 

  • Husmann K., Sexton P. M., Fischer J. A., and Born W. (2000) Mouse receptor-activity-modifying proteins 1, -2 and -3: Amino acid sequence, expression and function. Mol. Cell. Endocrinol. 162, 35–43.

    PubMed  CAS  Google Scholar 

  • Irwin D. M. (2001) cDNA cloning of proglucagon from the stomach and pancreas of the dog. DNA Seq. 12, 253–260.

    PubMed  CAS  Google Scholar 

  • Ishihara T., Nakamura S., Kaziro Y., Takahashi T., Takahashi K., and Nagata S. (1991) Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J., 10, 1635–1641.

    PubMed  CAS  Google Scholar 

  • Itoh N., Furuya T., Ozaki K., Ohta M., and Kawasaki T. (1991) The secretin precursor gene. Structure of the coding region and expression in the brain. J. Biol. Chem. 266, 12,595–12,598.

    CAS  Google Scholar 

  • Itoh N., Obata K., Yanaihara N., and Okamoto H. (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304, 547–549.

    PubMed  CAS  Google Scholar 

  • Jahnke G. D., Brunssen S., Maier W. E., and Harry G. J. (2001) Neurotoxicant-induced elevation of adrenomedullin expression in hippocampus and glia cultures. J. Neurosci. Res. 66, 464–474.

    PubMed  CAS  Google Scholar 

  • Jamen F., Persson K., Bertrand G., et al. (2000) PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. J. Clin. Invest. 105, 1307–1315.

    PubMed  CAS  Google Scholar 

  • Jensen R. T., Tatemoto K., Mutt V., Lemp G. F., and Gardner J. D. (1981) Actions of a newly isolated intestinal peptide PHI on pancreatic acini. Am. J. Physiol. 241, G498–502.

    PubMed  CAS  Google Scholar 

  • Jhamandas J. H. and Mactavish D. (2004) Antagonist of the amylin receptor blocks beta-amyloid toxicity in rat cholinergic basal forebrain neurons. J. Neurosci. 24, 5579–5584.

    PubMed  CAS  Google Scholar 

  • Jin S. L., Han V. K., Simmons J. G., Towle A. C., Lauder J. M., and Lund P. K. (1988) Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study. J. Comp. Neurol. 271, 519–532.

    PubMed  CAS  Google Scholar 

  • Jouishomme H., Whitfield J. F., Gagnon L., et al. (1994) Further definition of the protein kinase C activation domain of the parathyroid hormone. J. Bone. Miner. Res. 9, 943–949.

    PubMed  CAS  Google Scholar 

  • Jongsma H., Pettersson L. M., Zhang Y., et al. (2001) Markedly reduced chronic nociceptive response in mice lacking the PAC1 receptor. Neuroreport 12, 2215–2219

    PubMed  CAS  Google Scholar 

  • Kang G., Chepurny O. G., and Holz G. G. (2001) cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J. Physiol. 536, 375–385.

    PubMed  CAS  Google Scholar 

  • Karapalis A. C., Luz A., Glowacki J., et al. (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 8, 277–289.

    Google Scholar 

  • Kashima Y., Miki T., Shibasaki T., et al. (2001) Critical role of cAMP-GEFII-Rim2 complex in incretin-potentiated insulin secretion. J. Biol. Chem. 276, 46,046–46,053.

    CAS  Google Scholar 

  • Kastin A. J., Akerstrom V. and Pan W. (2002) Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J. Mol. Neurosci. 18, 7–14.

    PubMed  CAS  Google Scholar 

  • Kawahara M., Kuroda Y., Arispe N., and Rojas E. (2000) Alzheimer’s beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J. Biol. Chem. 275, 14,077–14,083.

    CAS  Google Scholar 

  • Kenny A. J. (1955) Extractable glucagon of the human pancreas. J. Clin. Endocrinol. Metab. 15, 1089–1105.

    PubMed  CAS  Google Scholar 

  • Kishimoto T., Radulovic J., Radulovic M., et al. (2000) Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat. Genet. 24, 415–419.

    PubMed  CAS  Google Scholar 

  • Kitamura K., Kangawa K., Kawamoto M., et al. (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 192, 553–560.

    PubMed  CAS  Google Scholar 

  • Knudsen S. M., Tams J. W., and Fahrenkrug J. (2001) Functional roles of conserved transmembrane prolines in the human VPAC(1) receptor. FEBS Lett. 503, 126–130.

    PubMed  CAS  Google Scholar 

  • Kong L. Y., Maderdrut J. L., Jeohn G. H., and Hong J. S. (1999) Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience 91, 493–500.

    PubMed  CAS  Google Scholar 

  • Konturek S. J., Pepera J., Zabielski K., et al. (2003) Brain-gut axis in pancreatic secretion and appetite control. J. Physiol. Pharmacol. 54, 293–317.

    PubMed  CAS  Google Scholar 

  • Kourie J. I. and Henry C. L. (2002) Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: The role of dangerous unchaperoned molecules. Clin. Exp. Pharmacol. Physiol. 29, 741–753.

    PubMed  CAS  Google Scholar 

  • Kourie J. I., Culverson A. L., Farrelly P. V., Henry C. L., and Laohachai K. N. (2002). Heterogeneous amyloid-formed ion channels as a common cytotoxic mechanism: Implications for therapeutic strategies against amyloidosis. Cell Biochem. Biophys. 36, 191–207.

    PubMed  CAS  Google Scholar 

  • Koves K., Arimura A., Somogyvari-Vigh A., Vigh S., and Miller J. (1990) Immunohistochemical demonstration of a novel hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide, in the ovine hypothalamus. Endocrinology 127, 264–271.

    PubMed  CAS  Google Scholar 

  • Kozicz T., Yanaihara H., and Arimura A. (1998) Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J. Comp. Neurol. 391, 1–10.

    PubMed  CAS  Google Scholar 

  • Kuwahara S., Kesuma Sari D., Tsukamoto Y., Tanaka S., and Sasaki F. (2004) Age-related changes in growth hormone (GH)-releasing hormone and somatostatin neurons in the hypothalamus and in GH cells in the anterior pituitary of female mice. Brain Res. 1025, 113–122.

    PubMed  CAS  Google Scholar 

  • La Buda C. J. and Usdin T. B. (2004) Tuberoinfundibular peptide of 39 residues decreases pain-related affective behavior. Neuroreport 15, 1779–1782.

    Google Scholar 

  • Laburthe M., Couvineau A., Gaudin P., Maoret J. J., Rouyer-Fessard C., and Nicole P. (1996) Receptors for VIP, PACAP, secretin, GRF, glucagon, GLP-1, and other members of their new family of G protein-linked receptors: structure-function relationship with special reference to the human VIP-1 receptor. Ann. N. Y. Acad. Sci. 805, 94–109.

    PubMed  CAS  Google Scholar 

  • Lambeir A. M., Proost P., Scharpe S., and De Meester I. (2002) A kinetic study of glucagon-like peptide-1 and glucagon-like peptide-2 truncation by dipeptidyl peptidase IV, in vitro. Biochem. Pharmacol. 64, 1753–1756.

    PubMed  CAS  Google Scholar 

  • Lanfranco F., Gianotti L., Giordano R., Pellegrino M., Maccario M., and Arvat E. (2003) Ageing, growth hormone and physical performance. J. Endocrinol. Invest. 26, 861–872.

    PubMed  CAS  Google Scholar 

  • Larsen P. J., Tang-Christensen M., and Jessop D. S. (1997) Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 138, 4445–4455.

    PubMed  CAS  Google Scholar 

  • Lefkowitz R. J. (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 25, 413–422.

    PubMed  CAS  Google Scholar 

  • Lesch K. P., Ihl R., Frolich L., et al. (1990) Endocrine responses to growth hormone releasing hormone and corticotropin releasing hormone in early-onset Alzheimer’s disease. Psychiatry Res 33, 107–112.

    PubMed  CAS  Google Scholar 

  • Leuthauser K., Gujer R., Aldecoa A., et al. (2000) Receptor-activity-modifying protein 1 forms heterodimers with two G protein-coupled receptors to define ligand recognition. Biochem. J. 351, 347–351.

    PubMed  CAS  Google Scholar 

  • Lewis K., Li C., Perrin M. H., et al. (2001) Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl. Acad. Sci. USA 98, 7570–7575.

    PubMed  CAS  Google Scholar 

  • Lezoualc’h F., Engert S., Berning B., and Behl C. (2000) Corticotropin-releasing hormone-mediated neuroprotection against oxidative stress is associated with the increased release of non-amyloidogenic amyloid beta precursor protein and with the suppression of nuclear factor-kappa B. Mol. Endocrinol. 14, 147–159.

    PubMed  CAS  Google Scholar 

  • Li S., Grinevich V., Fournier A., and Pelletier G. (1996) Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on gonadotropin-releasing hormone and somatostatin gene expression in the rat brain. Brain Res. Mol. Brain Res. 41, 157–162.

    PubMed  CAS  Google Scholar 

  • Li Y., Hansotia T., Yusta B., Ris F., Halban P. A., and Drucker D. J. (2003) Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J. Biol. Chem. 278, 471–478.

    PubMed  CAS  Google Scholar 

  • Liaw C. W., Lovenberg T. W., Barry G., Oltersdorf T., Grigoriadis D. E., and De Souza E. B. (1996) Cloning and characterization of the human corticotropin-releasing factor-2 receptor complementary deoxyribonucleic acid. Endocrinology 137, 72–77.

    PubMed  CAS  Google Scholar 

  • Lichtenwalner R. J., Forbes M. E., Bennett S. A., Lynch C. D., Sonntag W. E., and Riddle D. R. (2001) Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107, 603–613.

    PubMed  CAS  Google Scholar 

  • Light P. E., Manning Fox, J. E., Riedel M. J., and Wheeler M. B. (2002) Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol. Endocrinol. 16, 2135–2144.

    PubMed  CAS  Google Scholar 

  • Lightdale J. R., Hayer C., Duer A., et al. (2001) Effects of intravenous secretin on language and behavior of children with autism and gastrointestinal symptoms: a single-blinded, open-label pilot study. Pediatrics 108, E90.

  • Lin Y. J., Seroude L., and Benzer S. (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943–946.

    PubMed  CAS  Google Scholar 

  • Lin C., Lin S. C., Chang C. P., and Rosenfeld M. G. (1992) Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature 360, 765–768.

    PubMed  CAS  Google Scholar 

  • Liu G. J. and Madsen B. W. (1997) PACAP38 modulates activity of NMDA receptors in cultured chick cortical neurons. J. Neurophysiol. 78, 2231–2234.

    PubMed  CAS  Google Scholar 

  • Lopez De Maturana R., Willshaw A., Kuntzsch A., Rudolph R., and Donnelly D. (2003) The isolated N-terminal domain of the glucagon-like peptide-1 (GLP-1) receptor binds exendin peptides with much higher affinity than GLP-1. J. Biol. Chem. 278, 10,195–10,200.

    CAS  Google Scholar 

  • Lovshin J. A., Huang Q., Seaberg R., Brubaker P. L., and Drucker D. J. (2004) Extrahypothalamic expression of the glucagon-like peptide-2 receptor is coupled to reduction of glutamate-induced cell death in cultured hippocampal cells. Endocrinology 145, 3495–3506.

    PubMed  CAS  Google Scholar 

  • Lund P. K., Goodman R. H., Dee P. C., and Habener J. F. (1982) Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc. Natl. Acad. Sci. USA 79, 345–349.

    PubMed  CAS  Google Scholar 

  • Lutz-Bucher B., Monnier D., and Koch B. (1996) Evidence for the presence of receptors for pituitary adenylate cyclase-activating polypeptide in the neurohypophysis that are positively coupled to cyclic AMP formation and neurohypophyseal hormone secretion. Neuroendocrinology 64, 153–161.

    PubMed  CAS  Google Scholar 

  • Lynch C. D., Lyons D., Khan A., Bennett S. A., and Sonntag W. E. (2001) Insulin-like growth factor-1 selectively increases glucose utilization in brains of aged animals. Endocrinology 142, 506–509.

    PubMed  CAS  Google Scholar 

  • Main M. J., Brown J., Brown S., Fraser N. J., and Foord S. M. (1998) The cgrp receptor can couple via pertussis toxin sensitive and insensitive G proteins. FEBS Lett. 441, 6–10.

    PubMed  CAS  Google Scholar 

  • Malhotra R. K., Wakade T. D., and Wakade A. R. (1988). Vasoactive intestinal polypeptide and muscarine mobilize intracellular Ca2+ through breakdown of phosphoinositides to induce catecholamine secretion. Role of IP3 in exocytosis. J. Biol. Chem. 263, 2123–2126.

    PubMed  CAS  Google Scholar 

  • Mangin M., Ikeda K., Dreyer B. E., and Broadus A. E. (1990). Identification of an up-stream promoter of the human parathyroid hormone-related peptide gene. Mol. Endocrinol. 4, 851–858.

    PubMed  CAS  Google Scholar 

  • Martin J. L., Dietl M. M., Hof P. R., Palacios J. M., and Magistretti P. J. (1987) Autoradiographic mapping of [mono[125I]iodo-Tyr10, MetO17] vasoactive intestinal peptide binding sites in the rat brain. Neuroscience 23, 539–565.

    PubMed  CAS  Google Scholar 

  • Martin J. L., Gasser D., and Magistretti P. J. (1995) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide potentiate c-fos expression induced by glutamate in cultured cortical neurons. J. Neurochem. 65, 1–9.

    PubMed  CAS  Google Scholar 

  • Masuo Y., Ohtaki T., Masuda Y., Tsuda M., and Fujino M. (1992) Binding sites for pituitary adenylate cyclase activating polypeptide (PACAP): comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Res. 575, 113–123.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. and Goodman Y. (1995) Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium. Brain Res. 676, 219–224.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 3, 65–94.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. (2004) Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Maudsley S., and Martin B. (2004) A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res. Rev. 3, 445–464.

    PubMed  CAS  Google Scholar 

  • May P. C., Boggs L. N., and Fuson K. S. (1993) Neurotoxicity of human amylin in rat primary hippocampal cultures: Similarity to alzheimer’s disease amyloid-beta neurotoxicity. J. Neurochem. 61, 2330–2333.

    PubMed  CAS  Google Scholar 

  • Mayo K. E. (1992) Molecular cloning and expression of a pituitary-specific receptor for growth hormone-releasing hormone. Mol. Endocrinol. 6, 1734–1744.

    PubMed  CAS  Google Scholar 

  • Mayo K. E., Cerelli G. M., Lebo R. V., Bruce B. D., Rosenfeld M. G., and Evans R. M. (1985) Gene encoding human growth hormone-releasing factor precursor: structure, sequence, and chromosomal assignment. Proc. Natl. Acad. Sci. USA 82, 63–67.

    PubMed  CAS  Google Scholar 

  • Mayo K. E., Vale W., Rivier J., Rosenfeld M. G., and Evans R. M. (1983) Expression-cloning and sequence of a cDNA encoding human growth hormone-releasing factor. Nature 306, 86–88.

    PubMed  CAS  Google Scholar 

  • McKnight A. J. and Gordon S. (1996) EGF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules. Immunol. Today 17, 283–287.

    PubMed  CAS  Google Scholar 

  • Mclatchie L. M., Fraser N. J., Main M. J., et al. (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339.

    PubMed  CAS  Google Scholar 

  • Mei Y. A. (1999) High-voltage-activated calcium current and its modulation by dopamine D4 and pituitary adenylate cyclase activating polypeptide receptors in cerebellar granule cells. Zhongguo Yao Li Xue Bao 20, 3–9.

    PubMed  CAS  Google Scholar 

  • Merchenthaler I., Lane M., and Shughrue P. (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403, 261–280.

    PubMed  CAS  Google Scholar 

  • Merchenthaler I., Thomas C. R., and Arimura A. (1984) Immunocytochemical localization of growth hormone releasing factor (GHRF)-containing structures in the rat brain using anti-rat GHRF serum. Peptides 5, 1071–1075.

    PubMed  CAS  Google Scholar 

  • Mergenthaler P., Dirnagl U., and Meisel A. (2004) Pathophysiology of stroke: lessons from animal models. Metab. Brain Dis. 19, 151–167.

    PubMed  CAS  Google Scholar 

  • Miyata A., Arimura A., Dahl R. R., et al. (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164, 567–574.

    PubMed  CAS  Google Scholar 

  • Miyata A., Jiang L., Dahl R. D., et al. (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170, 643–648.

    PubMed  CAS  Google Scholar 

  • Morio H., Tatsuno I., Hirai A., Tamura Y., and Saito Y. (1996) Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res. 741, 82–88.

    PubMed  CAS  Google Scholar 

  • Muff R., Buhlmann N., Fischer J. A., and Born W. (1999) An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or-3. Endocrinology 140, 2924–2927.

    PubMed  CAS  Google Scholar 

  • Munroe D. G., Gupta A. K., Kooshesh F., et al. (1999) Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc. Natl. Acad. Sci. USA 96, 1569–1573.

    PubMed  CAS  Google Scholar 

  • Murase T., Kondo K., Otake K., and Oiso Y. (1993) Pituitary adenylate cyclase-activating polypeptide stimulates arginine vasopressin release in conscious rats. Neuroendocrinology 57, 1092–1096.

    PubMed  CAS  Google Scholar 

  • Mutt V. (1980) Chemistry, isolation and purification of gastrointestinal hormones. Biochem. Soc. Trans. 8, 11–14.

    PubMed  CAS  Google Scholar 

  • Mutt V., Carlquist M., and Tatemoto K. (1979) Secretin-like bioactivity in extracts of porcine brain. Life Sci. 25, 1703–1707.

    PubMed  CAS  Google Scholar 

  • Nabhan C., Xiong Y., Xie L. Y., and Abou-Samra A. B. (1995) The alternatively spliced type II corticotropin-releasing factor receptor, stably expressed in LLCPK-1 cells, is not well coupled to the G protein(s). Biochem. Biophys. Res. Commun. 212, 1015–1021.

    PubMed  CAS  Google Scholar 

  • Nagai K. (2004) Role of VIP-neurons in the hypothalamic suprachiasmatic nucleus in the control of blood glucose. Nippon Yakurigaku Zasshi 123, 253–260.

    PubMed  CAS  Google Scholar 

  • Nemeroff C. B., Krishnan K. R., Belkin B. M., et al. (1989) Growth hormone response to growth hormone releasing factor in Alzheimer’s disease. Neuroendocrinology 50, 663–666.

    PubMed  CAS  Google Scholar 

  • Nielsen, S. M. Nielsen L. Z., Hjorth S. A., Perrin M. H., and Vale W. W. (2000) Constitutive activation of tethered-peptide/corticotropin-releasing factor receptor chimeras. Proc. Natl. Acad. Sci. USA 97, 10,277–10,281.

    CAS  Google Scholar 

  • Nussenzveig D. R., Mathew S., and Gershengorn M. C. (1995) Alternative splicing of a 48-nucleotide exon generates two isoforms of the human calcitonin receptor. Endocrinology 136, 2047–2051.

    PubMed  CAS  Google Scholar 

  • Nutt R. F., Caulfield M. P., Levy J. J., Gibbons S. W., Rosenblatt M., and McKee R. L. (1990) Removal of partial agonism from parathyroid hormone (PTH)-related protein-(7-34)NH2 by substitution of PTH amino acids at positions 10 and 11. Endocrinology 127, 491–493.

    PubMed  CAS  Google Scholar 

  • O’Donohue T. L., Charlton C. G., Miller R. L., Boden G., and Jacobowitz D. M. (1981) Identification, characterization, and distribution of secretin immunoreactivity in rat and pig brain. Proc. Natl. Acad. Sci. USA 78, 5221–5224.

    PubMed  CAS  Google Scholar 

  • Offen D., Sherki Y., Melamed E., Fridkin M., Brenneman D. E., and Gozes I. (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res. 854, 257–262.

    PubMed  CAS  Google Scholar 

  • Ohlsson L. and Lindstrom P. (1990) The correlation between calcium outflow and growth hormone release in perifused rat somatotrophs. Endocrinology 126, 488–497.

    PubMed  CAS  Google Scholar 

  • Oliver K. R., Kane S. A., Salvatore C. A., et al. (2001) Cloning, characterization and central nervous system distribution of receptor activity modifying proteins in the rat. Eur. J. Neurosci. 14, 618–628.

    PubMed  CAS  Google Scholar 

  • Onoue S., Endo K., Ohshima K., Yajima T., and Kashimoto K. (2002) The neuropeptide PACAP attenuates beta-amyloid (1–42)-induced toxicity in PC12 cells. Peptides 23, 1471–1478.

    PubMed  CAS  Google Scholar 

  • Orskov C., Wettergren A., and Holst J. J. (1993) Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes 42, 658–661.

    PubMed  CAS  Google Scholar 

  • Otto C., Kovalchuk Y., Wolfer D. P., et al. (2001) Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J. Neurosci. 21, 5520–5527.

    PubMed  CAS  Google Scholar 

  • Owens M. J. and Nemeroff C. B. (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev. 43, 425–473.

    PubMed  CAS  Google Scholar 

  • Owley T., Mcmahon W., Cook E. H., et al. (2001) Multisite, double-blind, placebo-controlled trial of porcine secretin in autism. J. Am. Acad. Child Adolesc. Psychiatry 40, 1293–1299.

    PubMed  CAS  Google Scholar 

  • Palczewski K., Kumasaka T., Hori T., et al. (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745.

    PubMed  CAS  Google Scholar 

  • Pedersen W. A., McCullers D., Culmsee C., Haughey N. J., Herman J. P., and Mattson M. P. (2001) Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer’s disease. Neurobiol. Dis. 8, 492–503.

    PubMed  CAS  Google Scholar 

  • Pedersen W. A., Wan R., Zhang P., and Mattson M. P. (2002) Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type I. J. Neurosci. 22, 404–412.

    PubMed  CAS  Google Scholar 

  • Perrin M. H. and Vale W. W. (1999) Corticotropin releasing factor receptors and their ligand family. Ann. N. Y. Acad. Sci. 885, 312–328.

    PubMed  CAS  Google Scholar 

  • Perrin M. H., Fischer W. H., Kunitake K. S., et al. (2001). Expression, purification, and characterization of a soluble form of the first extracellular domain of the human type 1 corticotropin releasing factor receptor. J. Biol. Chem. 276, 31,528–31,534.

    CAS  Google Scholar 

  • Perry T., Haughey N. J., Mattson M. P., Egan J. M., and Greig N. H. (2002a) Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther. 302, 881–888.

    PubMed  CAS  Google Scholar 

  • Perry T., Lahiri D. K., Chen D., et al. (2002b) A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J. Pharmacol. Exp. Ther. 300, 958–966.

    PubMed  CAS  Google Scholar 

  • Perry T., Lahiri D. K., Sambamurti K., et al. (2003) Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J. Neurosci. Res. 72, 603–612.

    PubMed  CAS  Google Scholar 

  • Philbrick W. M., Wysolmerski J. J., Galbraith S., et al. (1996) Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol. Rev. 76, 127–173.

    PubMed  CAS  Google Scholar 

  • Pinhasov A., Mandel S., Torchinsky A., et al. (2003) Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res. Dev. Brain Res. 144, 83–90.

    PubMed  CAS  Google Scholar 

  • Pisegna J. R., Moody T. W., and Wank S. A. (1996) Differential signaling and immediate-early gene activation by four splice variants of the human pituitary adenylate cyclase-activating polypeptide receptor (hPACAP-R). Ann. N. Y. Acad. Sci. 805, 54–64.

    PubMed  CAS  Google Scholar 

  • Pittner R. A., Albrandt K., Beaumont K., et al. (1994) Molecular physiology of amylin. J. Cell. Biochem. 55, 19–28.

    PubMed  CAS  Google Scholar 

  • Pomara N., Singh R. R., Deptula D., et al. (1989) CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol. Psychiatry 26, 500–504.

    PubMed  CAS  Google Scholar 

  • Pombo C. M., Zalvide J., Gaylinn B. D., and Dieguez C. (2000) Growth hormone-releasing hormone stimulates mitogen-activated protein kinase. Endocrinology 141, 2113–2119.

    PubMed  CAS  Google Scholar 

  • Purdue B. W., Tilakaratne N., and Sexton P. M. (2002) Molecular pharmacology of the calcitonin receptor. Receptors Channels 8, 243–255.

    PubMed  CAS  Google Scholar 

  • Qi L. J, Leung A. T., Xiong Y., Marx K. A., and Abou-Samra A. B. (1997) Extracellular cysteines of the corticotropin-releasing factor receptor are critical for ligand interaction. Biochemistry 36, 12,442–12,448.

    CAS  Google Scholar 

  • Rao A. V. and Balachandran B. (2002) Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci. 5, 291–309.

    PubMed  CAS  Google Scholar 

  • Reichlin S. (1988) Neuroendocrine significance of vasoactive intestinal polypeptide. Ann. N. Y. Acad. Sci., 527, 431–449.

    PubMed  CAS  Google Scholar 

  • Rodbell M., Birnbaumer L., and Pohl S. L. (1971) Characteristics of glucagon action on the hepatic adenylate cyclase system. Biochem. J. 125, 58–59.

    Google Scholar 

  • Roe S. Y., McGowan E. M., and Rothwell N. J (1998) Evidence for the involvement of corticotrophin-releasing hormone in the pathogenesis of traumatic brain injury. Eur. J. Neurosci. 10, 553–559.

    PubMed  CAS  Google Scholar 

  • Rosenfeld R. G., Ceda G., Wilson D. M., Dollar L. A., and Hoffman A. R. (1984) Characterization of high affinity receptors for insulin-like growth factors I and II on rat anterior pituitary cells. Endocrinology 114, 1571–1575.

    PubMed  CAS  Google Scholar 

  • Said S. I. (1991) VIP as a modulator of lung inflammation and airway constriction. Am. Rev. Respir. Dis. 143, 22–24.

    Google Scholar 

  • Said S. I. and Mutt V. (1970) Potent peripheral and splanchnic vasodilator peptide from normal gut. Nature 225, 863–864.

    PubMed  CAS  Google Scholar 

  • Salomon R., Couvineau A., Rouyer-Fessard C., et al. (1993) Characterization of a common VIP-PACAP receptor in human small intestinal epithelium. Am. J. Physiol. 264, 294–300.

    Google Scholar 

  • Sawchenko P. E., Swanson L. W., Rivier J., and Vale W. W. (1985) The distribution of growth-hormone-releasing factor (GRF) immunoreactivity in the central nervous system of the rat: an immunohistochemical study using antisera directed against rat hypothalamic GRF. J. Comp. Neurol. 237, 100–115.

    PubMed  CAS  Google Scholar 

  • Schipani E., Langman C., Hunzelman J., et al. (1999) A novel parathyroid hormone (PTH)/PTH-related peptide receptor mutation in Jansen’s metaphyseal chondrodysplasia. J. Clin. Endocrinol. Metab. 84, 3052–3057.

    PubMed  CAS  Google Scholar 

  • Schirra J., Kuwert P., Wank U., et al. (1997) Differential effects of subcutaneous GLP-1 on gastric emptying, antroduodenal motility, and pancreatic function in men. Proc. Assoc. Am. Physicians 109, 84–97.

    PubMed  CAS  Google Scholar 

  • Segre G. V. (1993) Receptors for secretion, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagon-like peptide 1, growth hormone-releasing hormone, and glucagons belong to a newly discovered G-protein-linked receptor family. Trends Endocrinol. Metab. 4, 309–314.

    CAS  Google Scholar 

  • Seki Y., Suzuki Y., Baskaya M. K., et al. (1995) Central cardiovascular effects induced by intracisternal PACAP in dogs. Am. J. Physiol. 269, 135–139.

    Google Scholar 

  • Serrano J., Alonso D., Encinas J. M., et al. (2002) Adrenomedullin expression is up-regulated by ischemia-reperfusion in the cerebral cortex of the adult rat. Neuroscience 109, 717–731.

    PubMed  CAS  Google Scholar 

  • Serrano J., Alonso D., Fernandez A. P., et al. (2002a) Adrenomedullin in the central nervous system. Microsc. Res. Tech. 57, 76–90.

    PubMed  CAS  Google Scholar 

  • Servoss S. J., Lee S. J., Gibney G., Gozes I., Brenneman D. E., and Hill, J. M. (2001) IGF-I as a mediator of VIP / activity-dependent neurotrophic factor-stimulated embryonic growth Endocrinology 142, 3348–3353.

    PubMed  CAS  Google Scholar 

  • Sexton P. M., Albiston A., Morfis M., and Tilakaratne N. (2001) Receptor activity modifying proteins. Cell. Signal. 13, 73–83.

    PubMed  CAS  Google Scholar 

  • Sheitman B. B., Knable M. B., Jarskog L. F.,et al. (2004) Secretin for refractory schizophrenia. Schizophr. Res. 66, 177–181.

    PubMed  Google Scholar 

  • Shen S., Spratt C., Sheward W. J., et al. (2000) Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc. Natl. Acad. Sci. USA 97, 11,575–11,580.

    CAS  Google Scholar 

  • Shibasaki T., Yamauchi N., Hotta M., et al. (1986) In vitro release of growth hormone-releasing factor from rat hypothalamus: effect of insulin-like growth factor-1. Regul. Pept. 15, 47–53.

    PubMed  CAS  Google Scholar 

  • Shimizu M., Carter P. H., and Gardella T. J. (2000) Autoactivation of type-1 parathyroid hormone receptors containing a tethered ligand. J. Biol. Chem. 275, 19,456–19,460.

    CAS  Google Scholar 

  • Shoge K., Mishima H. K., Saitoh T., et al. (1999) Attenuation by PACAP of glutamate-induced neurotoxicity in cultured retinal neurons. Brain Res. 839, 66–73.

    PubMed  CAS  Google Scholar 

  • Shughrue P. J., Lane M. V., and Merchenthaler I. (1996) Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus. Endocrinology 137, 5159–5162.

    PubMed  CAS  Google Scholar 

  • Siegel J. M. (1999) Narcolepsy: a key role for hypocretins (orexins). Cell 98, 409–412.

    PubMed  CAS  Google Scholar 

  • Sieradzan K. A. and Mann D. M. (2001) The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol. Appl. Neurobiol. 27, 1–21.

    PubMed  CAS  Google Scholar 

  • Smith G. W., Aubry J. M., Dellu F., et al. (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102.

    PubMed  CAS  Google Scholar 

  • Somogyvari-Vigh A. and Reglodi D. (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr. Pharm. Des. 10, 2861–2869.

    PubMed  CAS  Google Scholar 

  • Sonntag W. E., Lynch C., Thornton P., Khan A., Bennett S., and Ingram R. (2000) The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. J. Anat. 197, 575–585.

    PubMed  CAS  Google Scholar 

  • Sorg O. and Magistretti P. J. (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J. Neurosci. 12, 4923–4931.

    PubMed  CAS  Google Scholar 

  • Steenbergh P. H., Hoppener J. W., Zandberg J., Lips C. J., and Jansz H. S. (1985) A second human calcitonin/CGRP gene. FEBS Lett. 183, 403–407.

    PubMed  CAS  Google Scholar 

  • Sugihara H., Emoto N., Tamura H., et al. (1999) Effect of insulin-like growth factor-I on growth hormone-releasing factor receptor expression in primary rat anterior pituitary cell culture. Neurosci. Lett. 276, 87–90.

    PubMed  CAS  Google Scholar 

  • Svoboda M., Tastenoy M., Vertongen P., and Robberecht P. (1994) Relative quantitative analysis of glucagon receptor mRNA in rat tissues. Mol. Cell. Endocrinol. 105, 131–137.

    PubMed  CAS  Google Scholar 

  • Swanson L. W. and Simmons D. M. (1989) Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. J. Comp. Neurol. 285, 413–435.

    PubMed  CAS  Google Scholar 

  • Takei N., Skoglosa Y., and Lindholm D. (1998) Neurotrophic and neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on mesencephalic dopaminergic neurons. J. Neurosci. Res. 54, 698–706.

    PubMed  CAS  Google Scholar 

  • Tamas A., Reglodi D., Szanto Z., Borsiczky B., Nemeth J., and Lengvari I. (2002) Comparative neuroprotective effects of preischemic PACAP and VIP administration in permanent occlusion of the middle cerebral artery in rats. Neuro. Endocrinol. Lett. 23, 249–254.

    PubMed  CAS  Google Scholar 

  • Tay J., Goulet M., Rusche J., and Boismenu R. (2004) Age-related and regional differences in secretin and secretin receptor mRNA levels in the rat brain. Neurosci. Lett. 366, 176–181.

    PubMed  CAS  Google Scholar 

  • Thornton P. L., Ingram R. L., and Sonntag W. E. (2000) Chronic [D-Ala2]-growth hormone-releasing hormone administration attenuates age-related deficits in spatial memory. J. Gerontol. A. Biol. Sci. Med. Sci. 55, 106–112.

    Google Scholar 

  • Tilakaratne N., Christopoulos G., Zumpe E. T., Foord S.M., and Sexton P. M. (2000) Amylin receptor phenotypes derived from human calcitonin receptor/ramp coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J. Pharmacol. Exp. Ther. 294, 61–72.

    PubMed  CAS  Google Scholar 

  • Timpl P., Spanagel R., Sillaber I., et al. (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet. 19, 162–166.

    PubMed  CAS  Google Scholar 

  • Trimble E. R., Bruzzone R., Biden T. J., Meehan C. J., Andreu D., and Merrifield R. B. (1987) Secretin stimulates cyclic AMP and inositol trisphosphate production in rat pancreatic acinar tissue by two fully independent mechanisms. Proc. Natl. Acad. Sci. USA 84, 3146–3150.

    PubMed  CAS  Google Scholar 

  • Tseng C. C. and Lin L. (1997) A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity. Biochem. Biophys. Res. Commun. 232, 96–100.

    PubMed  CAS  Google Scholar 

  • Turton M. D., O’shea D., Gunn I., et al. (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72.

    PubMed  CAS  Google Scholar 

  • Uchida D., Arimura A., Somogyvari-Vigh A., Shioda S. and Banks W. A. (1996) Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Res. 736, 280–286.

    PubMed  CAS  Google Scholar 

  • Ulrich C. D., 2nd, Wood P., Hadac E. M., Kopras E., Whitcomb D. C., and Miller L. J. (1998) Cellular distribution of secretin receptor expression in rat pancreas. Am. J. Physiol. 275, 1437–1444.

    Google Scholar 

  • Unson C. G., Macdonald D., and Merrifield R. B. (1993) The role of histidine-1 in glucagon action. Arch. Biochem. Biophys. 300, 747–750.

    PubMed  CAS  Google Scholar 

  • Usdin T. B., Gruber C., and Bonner T. I. (1995) Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J. Biol. Chem. 270, 15,455–15,458.

    CAS  Google Scholar 

  • Usdin T. B., Hoare S. R., Wang T., Mezey E., and Kowalak J. A. (1999) TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat. Neurosci. 2, 941–943.

    PubMed  CAS  Google Scholar 

  • Vale W., Spiess J., Rivier C., and Rivier J. (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213, 1394–1397.

    PubMed  CAS  Google Scholar 

  • Vaudry D., Basille M., Anouar Y., Fournier A., Vaudry H., and Gonzalez B. J. (1998a) The neurotrophic activity of PACAP on rat cerebellar granule cells is associated with activation of the protein kinase A pathway and c-fos gene expression. Ann. N. Y. Acad. Sci. 865, 92–99.

    PubMed  CAS  Google Scholar 

  • Vaudry D., Gonzalez B. J., Basille M., Anouar Y., Fournier A., and Vaudry H. (1998b) Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience 84, 801–812.

    PubMed  CAS  Google Scholar 

  • Vaudry D., Gonzalez B. J., Basille M., Pamantung T. F., Fournier A., and Vaudry H. (2000) PACAP acts as a neurotrophic factor during histogenesis of the rat cerebellar cortex. Ann. N. Y. Acad. Sci. 921, 293–299.

    PubMed  CAS  Google Scholar 

  • Vilardaga J. P., Frank M., Krasel C., Dees C., Nissenson R. A., and Lohse M. J. (2001) Differential conformational requirements for activation of G proteins and the regulatory proteins arrestin and G protein-coupled receptor kinase in the G protein-coupled receptor for parathyroid hormone (PTH)/PTH-related protein. J. Biol. Chem. 276, 33,435–33,443.

    CAS  Google Scholar 

  • Villalba M., Bockaert J., and Journot L. (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J. Neurosci. 17, 83–90.

    PubMed  CAS  Google Scholar 

  • Volpi R., Caffarra P., Scaglioni A., et al. (1997) Defective 5-HT1-receptor-mediated neurotransmission in the control of growth hormone secretion in Parkinson’s disease. Neuropsychobiology 35, 79–83.

    PubMed  CAS  Google Scholar 

  • Wakelam M. J., Murphy G. J., Hruby V. J., and Houslay M. D. (1986) Activation of two signal-transduction systems in hepatocytes by glucagon. Nature 323, 68–71.

    PubMed  CAS  Google Scholar 

  • Wang X., Yue T. L., Barone F. C., et al. (1995) Discovery of adrenomedullin in rat ischemic cortex and evidence for its role in exacerbating focal brain ischemic damage. Proc. Natl. Acad. Sci. USA 92, 11,480–11,484.

    CAS  Google Scholar 

  • Weaver D. R., Deeds J. D., Lee K., and Segre G. V. (1995) Localization of parathyroid hormone-related peptide (PTHrP) and PTH/PTHrP receptor mRNAs in rat brain. Brain Res. Mol. Brain Res. 28, 296–310.

    PubMed  CAS  Google Scholar 

  • Weir E. C., Brines M. L., Ikeda K., Burtis W. J., Broadus A. E., and Robbins R. J. (1990) Parathyroid hormone-related peptide gene is expressed in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 87, 108–112.

    PubMed  CAS  Google Scholar 

  • Weiss J. H., Hartley D. M., Koh J., and Choi D. W. (1990) The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247, 1474–1477.

    PubMed  CAS  Google Scholar 

  • Welch M. G., Keune J. D., Welch-Horan T. B., Anwar N., Anwar, M., and Ruggiero D. A. (2003) Secretin activates visceral brain regions in the rat including areas abnormal in autism. Cell. Mol. Neurobiol. 23, 817–837.

    PubMed  CAS  Google Scholar 

  • Wysolmerski J. J., Philbrick W. M., Dunbar M. E., Lanske B., Kronenberg H., and Broadus A. E. (1998) Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development 125, 1285–1294.

    PubMed  CAS  Google Scholar 

  • Xiao Q., Giguere J., Parisien M., et al. (2001) Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo. Biochemistry 40, 2860–2869.

    PubMed  CAS  Google Scholar 

  • Yakar S., Pennisi P., Zhao H., Zhang Y., and Leroith D. (2004) Circulating IGF-1 and its role in cancer: lessons from the IGF-1 gene deletion (LID) mouse. Novartis Found. Symp. 262, 3–9; discussion 9–18, 265–268.

    PubMed  CAS  Google Scholar 

  • Yamamoto H., Lee C. E., Marcus J. N., et al. (2002). Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J. Clin. Invest. 110, 43–52.

    PubMed  CAS  Google Scholar 

  • Yamashita S. and Melmed S. (1986) Insulin-like growth factor I action on rat anterior pituitary cells: suppression of growth hormone secretion and messenger ribonucleic acid levels. Endocrinology 118, 176–182.

    PubMed  CAS  Google Scholar 

  • Yasuda M., Minamitani N., and Maeda K. (1993) Peptide histidine methionine in cerebrospinal fluid of patients with senile dementia of the Alzheimer type. Jpn. J. Psychiatry Neurol. 47, 85–90.

    PubMed  CAS  Google Scholar 

  • Yasuda M., Maeda K., Kakigi T., Minamitani N., Kawaguchi T., and Tanaka C. (1995) Low cerebrospinal fluid concentrations of peptide histidine valine and somatostatin-28 in Alzheimer’s disease: altered processing of prepro-vasoactive intestinal peptide and prepro-somatostatin. Neuropeptides 29, 325–330.

    PubMed  CAS  Google Scholar 

  • Yiangou Y., Williams S. J., Bishop A. E., Polak J. M., and Bloom S. R. (1987) Peptide histidine-methionine immunoreactivity in plasma and tissue from patients with vasoactive intestinal peptide-secreting tumors and watery diarrhea syndrome. J. Clin. Endocrinol. Metab., 64, 131–139.

    PubMed  CAS  Google Scholar 

  • Yung W. H., Leung P. S., Ng S. S., Zhang J., Chan S. C., and Chow B. K. (2001). Secretin facilitates GABA transmission in the cerebellum. J. Neurosci. 21, 7063–7068.

    PubMed  CAS  Google Scholar 

  • Yusta B., Somwar R., Wang F., et al. (1999) Identification of glucagon-like peptide-2 (GLP-2)-activated signaling pathways in baby hamster kidney fibroblasts expressing the rat GLP-2 receptor. J. Biol. Chem. 274, 30,459–30,467.

    CAS  Google Scholar 

  • Yusta B., Boushey R. P., and Drucker D. J. (2000) The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway. J. Biol. Chem. 275, 35,345–35,352.

    CAS  Google Scholar 

  • Yusta B., Estall J., and Drucker D. J. (2002) Glucagon-like peptide-2 receptor activation engages bad and glycogen synthase kinase-3 in a protein kinase A-dependent manner and prevents apoptosis following inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem. 277, 24,896–24,906.

    CAS  Google Scholar 

  • Zamostiano R., Pinhasov A., Bassan M., et al. (1999) A femtomolar-acting neuroprotective peptide induces increased levels of heat shock protein 60 in rat cortical neurons: a potential neuroprotective mechanism. Neurosci. Lett. 264, 9–12.

    PubMed  CAS  Google Scholar 

  • Zeitler P. and Siriwardana G. (2000) Stimulation of mitogen-activated protein kinase pathway in rat somatotrophs by growth hormone-releasing hormone. Endocrine 12, 257–264.

    PubMed  CAS  Google Scholar 

  • Zerr P. and Feltz A. (1994) Forskolin blocks the transient K current of rat cerebellar granule neurons. Neurosci. Lett. 181, 153–157.

    PubMed  CAS  Google Scholar 

  • Zumpe E. T., Tilakaratne N., Fraser N. J., Christopoulos G., Foord S. M., and Sexton P. M. (2000) Multiple ramp domains are required for generation of amylin receptor phenotype from the calcitonin receptor gene product. Biochem. Biophys. Res. Commun. 267, 368–372.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Maudsley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, B., de Maturana, R.L., Brenneman, R. et al. Class II G protein-coupled receptors and their ligands in neuronal function and protection. Neuromol Med 7, 3–36 (2005). https://doi.org/10.1385/NMM:7:1-2:003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:7:1-2:003

Index Entries

Navigation