Skip to main content
Log in

Apoptosis of Multiple Myeloma

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells. MM cells localize to the bone marrow, where cell adhesion-mediated autocrine or paracrine activation of various cytokines, such as interleukin 6, insulin-like growth factor 1, and interferon α, results in their accumulation mainly because of loss of critical apoptotic controls. Resistance to apoptosis, a genetically regulated cell death process, may play a critical role in both pathogenesis and resistance to treatment of MM.Abnormalities in regulation and execution of apoptosis can contribute to tumor initiation, progression, as well as to tumor resistance to various therapeutic agents. Apoptosis is executed via 2 main pathways that lead to activation of caspases: the death receptor (extrinsic) pathway and the mitochondrial (intrinsic) pathway. Ionizing radiation and chemotherapeutic agents act primarily through the intrinsic pathway, in which mitochondria play the central role. Various therapeutic modalities that are effective in MM modulate levels of the proapoptotic and antiapoptotic Bcl-2 family of proteins and of inhibitors of apoptosis, expression of which is primarily regulated by p53, nuclear factor κB, and STAT (signal transducers and activators of transcription) factors.This review focuses on the key concepts and some of the most recent studies of signaling pathways regulated in MM and summarizes what is known about the clinical role of these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer. 2002;2:927–937.

    Article  CAS  PubMed  Google Scholar 

  2. Hussein MA, Juturi JV, Lieberman I. Multiple myeloma: present and future. Curr Opin Oncol. 2002;14:31–35.

    Article  PubMed  Google Scholar 

  3. Arends MJ, Wyllie AH. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 1991;32:223–254.

    Article  CAS  PubMed  Google Scholar 

  4. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–219.

    Article  CAS  PubMed  Google Scholar 

  5. Almasan A, Ashkenazi A. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 2003;14:337–348.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q, Gong B, Mahmoud-Ahmed A, et al. Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosisin multiple myeloma. Blood. 2001;98:2183–2192.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Q, Gong B, Almasan A. Distinct stages of cytochrome crelease from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ. 2000;7:227–233.

    Article  CAS  PubMed  Google Scholar 

  8. Mazumder S, Chen Q, Gong B, Drazba JA, Buchsbaum JC, Almasan A.Proteolytic cleavage of cyclin E leads to inactivation of associated kinase activity and amplification of apoptosis in hematopoietic cells. Mol Cell Biol. 2002;22:2398–2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cory S, Adams JM. The bcl2 family: regulators of the cellular lifeordeath switch. Nat Rev Cancer. 2002;2:647–656.

    Article  CAS  PubMed  Google Scholar 

  10. Huang DC, Strasser A. BH3-only proteins: essential initiators of apoptotic cell death. Cell. 2000;103:839–842.

    Article  CAS  PubMed  Google Scholar 

  11. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10:369–377.

    Article  CAS  PubMed  Google Scholar 

  12. Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem. 2000;69:217–245.

    Article  CAS  PubMed  Google Scholar 

  13. Joza N, Susin SA, Daugas E, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001;410:549–554.

    Article  CAS  PubMed  Google Scholar 

  14. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412:95–99.

    Article  CAS  PubMed  Google Scholar 

  15. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.

    Article  CAS  PubMed  Google Scholar 

  16. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000;102:43–53.

    Article  CAS  PubMed  Google Scholar 

  17. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature. 2001;410:112–116.

    Article  CAS  PubMed  Google Scholar 

  18. Hegde R, Srinivasula SM, Zhang Z, et al. Identification of Omi/ HtrA2 as a mitochondrial apoptotic serine protease that disruptsinhibitor of apoptosis protein-caspase interaction. J Biol Chem. 2002;277:432–438.

    Article  CAS  PubMed  Google Scholar 

  19. Martins LM, Iaccarino I, Tenev T, et al. The serine protease Omi/ HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem. 2002;277:439–444.

    Article  CAS  PubMed  Google Scholar 

  20. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clinical applications. Blood. 2004;104:607–618.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Q, Ray S, Hussein MA, Srkalovic G, Almasan A. Role of Apo2L/TRAIL and Bcl-2-family proteins in apoptosis of multiple myeloma. Leuk Lymphoma. 2003;44:1209–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chauhan D, Anderson KC. Mechanisms of cell death and survival in multiple myeloma (MM): therapeutic implications. Apoptosis. 2003;8:337–343.

    Article  CAS  PubMed  Google Scholar 

  23. Chauhan D, Hideshima T, Anderson KC. Apoptotic signaling in multiple myeloma: therapeutic implications. Int J Hematol. 2003;78:114–120.

    Article  CAS  PubMed  Google Scholar 

  24. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 2001;7:673–682.

    Article  CAS  PubMed  Google Scholar 

  25. Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288:1053–1058.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang B, Gojo I, Fenton RG. Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood. 2002;99:1885–1893.

    Article  CAS  PubMed  Google Scholar 

  27. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 1999;10:105–115.

    Article  CAS  PubMed  Google Scholar 

  28. Tu Y, Renner S, Xu F, et al. BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res. 1998;58:256–262.

    PubMed  CAS  Google Scholar 

  29. Spets H, Stromberg T, Georgii-Hemming P, Siljason J, Nilsson K, Jernberg-Wiklund H. Expression of the bcl-2 family of pro- and anti-apoptotic genes in multiple myeloma and normal plasma cells: regulation during interleukin-6 (IL-6)-induced growth and survival. Eur J Haematol. 2002;69:76–89.

    Article  CAS  PubMed  Google Scholar 

  30. Linden M, Kirchhof N, Carlson C, Van Ness B. Targeted overexpression of Bcl-XL in B-lymphoid cells results in lymphoproliferative disease and plasma cell malignancies. Blood. 2004;103:2779–2786.

    Article  CAS  PubMed  Google Scholar 

  31. Bharti AC, Shishodia S, Reuben JM, et al. Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood. 2004;103:3175–3184.

    Article  CAS  PubMed  Google Scholar 

  32. Panaretakis T, Pokrovskaja K, Shoshan MC, Grander D. Interferon-Alpha-induced apoptosis in U266 cells is associated with activation of the proapoptotic Bcl-2 family members Bak and Bax. Oncogene. 2003;22:4543–4556.

    Article  CAS  PubMed  Google Scholar 

  33. Park WH, Seol JG, Kim ES, et al. Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res. 2000;60:3065–3071.

    PubMed  CAS  Google Scholar 

  34. Zheng Y, Shi Y, Tian C, et al. Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene. 2004;23:1239–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Q, Hilsenbeck S, Gazitt Y. Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood. 2003;101:4078–4087.

    Article  CAS  PubMed  Google Scholar 

  36. Hussein MA, Saleh M, Ravandi F, Mason J, Rifkin RM, Ellison R. Phase 2 study of arsenic trioxide in patients with relapsed or refractory multiple myeloma. Br J Haematol. 2004;125:470–476.

    Article  CAS  PubMed  Google Scholar 

  37. Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100:194–199.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Q, Gazitt Y. Potentiation of dexamethasone-, paclitaxel-, and Ad-p53-induced apoptosis by Bcl-2 antisense oligodeoxynucleotides in drug-resistant multiple myeloma cells. Blood. 2003;101:4105–4114.

    Article  CAS  PubMed  Google Scholar 

  39. van de Donk NW, Kamphuis MM, van Dijk M, Borst HP, Bloem AC, Lokhorst HM. Chemosensitization of myeloma plasma cells by an antisense-mediated downregulation of Bcl-2 protein. Leukemia. 2003;17:211–219.

    Article  CAS  PubMed  Google Scholar 

  40. van de Donk NW, de Weerdt O, Veth G, et al. G3139, a Bcl-2 antisense oligodeoxynucleotide, induces clinical responses in VAD refractory myeloma. Leukemia. 2004;18:1078–1084.

    Article  CAS  PubMed  Google Scholar 

  41. Khan SB, Maududi T, Barton K, Ayers J, Alkan S. Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol. 2004;125:156–161.

    Article  CAS  PubMed  Google Scholar 

  42. Mitsiades N, Mitsiades CS, Richardson PG, et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood. 2003;101:4055–4062.

    Article  CAS  PubMed  Google Scholar 

  43. Jazirehi AR, Bonavida B. Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin’s lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther. 2004;3:71–84.

    Article  CAS  PubMed  Google Scholar 

  44. Stromberg T, Dimberg A, Hammarberg A, et al. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood. 2004;103:3138–3147.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Chai Y-C, Mazumder S, et al. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ. 2003;10:323–334.

    Article  CAS  PubMed  Google Scholar 

  46. Chauhan D, Li G, Sattler M, et al. Superoxide-dependent and independent mitochondrial signaling during apoptosis in multiple myeloma cells. Oncogene. 2003;22:6296–6300.

    Article  CAS  PubMed  Google Scholar 

  47. Ikeda T, Nakata Y, Kimura F, et al. Induction of redox imbalance and apoptosis in multiple myeloma cells by the novel triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid. Mol Cancer Ther. 2004;3:39–45.

    PubMed  CAS  Google Scholar 

  48. Chauhan D, Li G, Hideshima T, et al. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem. 2003;278:17593–17596.

    Article  CAS  PubMed  Google Scholar 

  49. Deng Y, Ren X, Yang L, Lin Y,Wu X A. JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell. 2003;115:61–70.

    Article  CAS  PubMed  Google Scholar 

  50. Ursini-Siegel J, Zhang W, Altmeyer A, et al. TRAIL/Apo-2 ligand induces primary plasma cell apoptosis. J Immunol. 2002;169:5505–5513.

    Article  CAS  PubMed  Google Scholar 

  51. Sangfelt O, Erickson S, Castro J, Heiden T, Einhorn S, Grander D.Induction of apoptosis and inhibition of cell growth are independent responses to interferon-alpha in hematopoietic cell lines. Cell Growth Differ. 1997;8:343–352.

    PubMed  CAS  Google Scholar 

  52. Gong B, Almasan A. Genomic organization and transcriptional regulation of the human Apo2L/TRAIL gene. Biochem Biophys Res Commun. 2000;278:747–752.

    Article  CAS  PubMed  Google Scholar 

  53. Ghaffari S, Jagani Z, Kitidis C, Lodish HF, Khosravi-Far R.Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci U S A. 2003;100:6523–6528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jourdan M, Veyrune JL, Vos JD, Redal N, Couderc G, Klein B. A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells. Oncogene. 2003;22:2950–2959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thyrell L, Hjortsberg L, Arulampalam V, et al. Interferon alphainduced apoptosis in tumor cells is mediated through the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. J Biol Chem. 2004;279:24152–24162.

    Article  CAS  PubMed  Google Scholar 

  56. Cohen H, Lavu S, Bitterman K, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell. 2004;13:627–638.

    Article  CAS  PubMed  Google Scholar 

  57. Mazumder S, Gong B, Almasan A. Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells. Oncogene. 2000;19:2828–2835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Parmo-Cabanas M, Bartolome RA, Wright N, Hidalgo A, Drager AM, Teixido J. Integrin alpha4beta1 involvement in stromal cellderived factor-1alpha-promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Exp Cell Res. 2004;294:571–580.

    Article  CAS  PubMed  Google Scholar 

  59. Hodge DR, Xiao W, Wang LH, Li D, Farrar WL. Activating mutations in STAT3 and STAT5 differentially affect cellular proliferation and apoptotic resistance in multiple myeloma cells. Cancer Biol Ther. 2004;3:188–194.

    Article  CAS  PubMed  Google Scholar 

  60. Dai Y, Pei XY, Rahmani M, Conrad DH, Dent P, Grant S. Interruption of the NF-kappaB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood. 2004;103:2761–2770.

    Article  CAS  PubMed  Google Scholar 

  61. Panwalkar A, Verstovsek S, Giles F. Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies. Cancer. 2004;100:1578–1589.

    Article  CAS  PubMed  Google Scholar 

  62. Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood. 2002;99:4079–4086.

    Article  CAS  PubMed  Google Scholar 

  63. Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 2003;101:1053–1062.

    Article  CAS  PubMed  Google Scholar 

  64. Greenstein S, Krett NL, Kurosawa Y, et al. Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol. 2003;31:271–282.

    Article  CAS  PubMed  Google Scholar 

  65. Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002;99:14374–14379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res. 2004;10:3839–3852.

    Article  CAS  PubMed  Google Scholar 

  67. Chauhan D, Li G, Hideshima T, et al. Blockade of ubiquitin-conjugating enzyme CDC34 enhances anti-myeloma activity of bortezomib/proteasome inhibitor PS-341. Oncogene. 2004;23:3597–3602.

    Article  CAS  PubMed  Google Scholar 

  68. Chauhan D, Li G, Podar K, et al. Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood [Epub ahead of print]. June 24, 2004.

  69. Le Gouill S, Podar K, Amiot M, et al.VEGF induces MCL-1 upregulation and protects multiple myeloma cells against apoptosis. Blood [Epub ahead of print]. June 24, 2004.

  70. Menu E, Kooijman R, Van Valckenborgh E, et al. Specific roles for the PI3K and the MEK-ERK pathway in IGF-1-stimulated hemotaxis, VEGF secretion and proliferation of multiple myeloma cells: study in the 5T33MM model. Br J Cancer. 2004;90:1076–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tai YT, Catley LP, Mitsiades CS, et al. Mechanisms by which SGN- 40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res. 2004;64:2846–2852.

    Article  CAS  PubMed  Google Scholar 

  72. Paterson JL, Li Z, Wen XY, et al. Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol. 2004;124:595–603.

    Article  CAS  PubMed  Google Scholar 

  73. Tarte K, Jourdan M, Veyrune JL, et al. The Bcl-2 family member Bfl-1/A1 is strongly repressed in normal and malignant plasma cells but is a potent anti-apoptotic factor for myeloma cells. Br J Haematol. 2004;125:373–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Osadchy A, Drucker L, Radnay J, Shapira H, Lishner M. Microenvironment factors do not afford myeloma cell lines protection from simvastatin. Eur J Haematol. 2004;73:1–8.

    Article  Google Scholar 

  75. Ray S, Hissong JG, Oancea M, Almasan A. Expression and regulation of death receptors in multiple myeloma and prostate carcinoma. In: El-Deiry WS, ed. Death Receptors in Cancer Therapy. Totowa, NJ: Humana Press; 2004:281–296.

    Google Scholar 

  76. Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004;103:3148–3157.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Almasan.

About this article

Cite this article

Oancea, M., Mani, A., Hussein, M.A. et al. Apoptosis of Multiple Myeloma. Int J Hematol 80, 224–231 (2004). https://doi.org/10.1532/IJH97.04107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04107

Key words

Navigation