Skip to main content
Log in

Microstructure evolution in amorphous Ge/Si multilayers grown by magnetron sputter deposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microstructure evolution in amorphous Ge/Si multilayers grown by dual-target dc magnetron sputtering was investigated by cross-sectional transmission electron microscopy, x-ray diffraction, and growth simulations. In films grown under low intensity ion-irradiation conditions, the structure is columnar with low-density regions along column boundaries where layer intermixing was observed. By increasing the low-irradiation intensity (controlled by an applied negative substrate-bias), structures with smooth and well-defined layers could be grown. This was achieved at bias voltages between 80 and 140 V, depending on the sputtering gas pressure. As the ion-irradiation intensity is further increased, ion-induced intermixing degrades the layer interfaces and finally an amorphous Si1–xGex alloy forms. The combination of x-ray diffraction measurements and reflectivity calculations reveals an asymmetry between the Ge/Si and Si/Ge interface widths due, primarily, to a corresponding asymmetry in incident particle energies during the growth of alternate layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An alternative term for superlattice is multilayer but not necessarily vice versa. Since the samples in this study cannot be considered as superlattices, the term multilayer is used throughout the text.

  2. W. Deubner, Annin. Phys. 5, 261 (1930).

    Article  CAS  Google Scholar 

  3. J. W. M. Dumond and J.P. Youtz, Phys. Rev. 48, 703 (1935).

  4. L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).

  5. H. Munekata and H. Kukimoto, Jpn. J. Appl. Phys. 22, L544 (1983).

  6. B. Abeles and T. Tiedje, Phys. Rev. Lett. 51, 2003 (1983).

  7. J. P. Conde, V. Chu, D. S. Chen, and S. Wagner, J. Appl. Phys. 75, 1638 (1994).

  8. I. Barzen, M. Edinger, J. Scherer, S. Ulrich, K. Jung, and H. Ehrhardt, Surf. Coatings Technol. 60, 454 (1993).

  9. G. H. Döhler, J. Non-Cryst. Solids 77&78, 1041 (1985).

  10. Y. Kuwano, H. Tarui, T. Takahama, M. Nishikuni, Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, and M. Ohnishi, J. Non-Cryst. Solids 97&98, 289 (1987).

  11. M. Tsukude, S. Hata, Y. Kohda, S. Miyazaki, and M. Hirose, J. Non-Cryst. Solids 97&98, 317 (1987).

  12. E. Majkova, S. Luby, M. Jergel, R. Senderak, B. George, M. Vaezzadeh, and J. Ghanbaja, Thin Solid Films 238, 295 (1992); J. M. Slaughter, D. W. Schultze, C. R. Hills, A. Mirone, R. Stalio, R. N. Watts, C. Tarrio, T. B. Lucatorto, M. Krumrey, P. Mueller, and C. M. Falco, J. Apply. Phys. 76, 2144 (1994).

  13. B. Abeles, Superlattices and Microstructures 5, 473 (1989).

  14. E. L. Z. Velasquez, M. C. A. Fantini, M. N. P. Carreño, I. Pereyra, H. Takahashi, and R. Landers, J. Appl. Phys. 75, 543 (1994).

  15. S. Miyazaki, Y. Ihara, and M. Hirose, J. Non-Cryst. Solids 97&98, 887 (1987).

  16. I. Honma, H. Komiyama, and K. Tanaka, J. Appl. Phys. 66, 1170 (1989).

  17. S. M. Prokes and F. Spaepen, Appl. Phys. Lett. 47, 234 (1985).

  18. Zs. Czigany, G. Radnóczi, K. Järrendahl, and J-E. Sundgren, J. Mater. Res. (1997, in press).

  19. D. J. Miller, K. E. Gray, R. T. Kampwirth, and J. M. Murduck, Europhys. Lett. 19, 27 (1992).

  20. I. Petrov, V. Orlinov, I. Ivanov, and J. Kourtev, Contrib. Plasma Phys. 28, 157 (1988).

  21. I. Petrov, V. Orlinov, I. Ivanov, and J. Kourtev, Contrib. Plasma Phys. 30, 233 (1990).

  22. G. Radnóczi and A´ . Barna, Surf. Coating Technol. 80, 89 (1996); Á. Barna, Specimen Preparation for Transmission Electron Microscopy of Materials III, edited by R. Anderson, B. Tracy, and J. Bravman (Mater. Res. Soc. Symp. Proc. 254, Pittsburgh, PA, 1991), pp. 3–22.

  23. D. K. G. de Boer, Phys. Rev. B 44, 498 (1991).

  24. J. M. Cowley, Diffraction Physics (North-Holland/American Elsevier, Amsterdam, 1975).

  25. S. Müller-Pfeiffer, H-J. Anklam, and W. Haubenreisser, Phys. Status Solidi 160, 491 (1990); S. Müller-Pfeiffer, H. van Kranenburg, and J. C. Lodder, Thin Solid Films 213, 143 (1992).

  26. W. D. Westwood, J. Vac. Sci. Technol. 15, 1 (1978).

  27. I. Ivanov, P. Kazansky, L. Hultman, I. Petrov, and J-E. Sundgren, J. Vac. Sci. Technol. A 12, 314 (1994).

  28. R. Messier and J. E. Yehoda, J. Appl. Phys. 58, 3739 (1985).

  29. M. Kardar, G. Parisi, and Y-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).

  30. G. S. Bales, R. Bruinsma, E. A. Eklund, R, O. U. Karunasiri, J. Rudnick, and A. Zangwill, Science 249, 264 (1990).

  31. G. S. Bales and A. Zangwill, J. Vac. Sci. Technol. A 9, 145 (1991).

  32. C. Tang, S. Alexander, and R. Bruinsma, Phys. Rev. Lett. 64, 772 (1990).

    Article  CAS  Google Scholar 

  33. Handbook of Chemistry and Physics, 73rd ed. (CRC Press, Boca Raton, FL, 1992–93), pp. 9–131, 132.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Järrendahl.

Additional information

WWW home page: http://www.ifm.liu.se/Thinfilm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Järrendahl, K., Ivanov, I., Sundgren, JE. et al. Microstructure evolution in amorphous Ge/Si multilayers grown by magnetron sputter deposition. Journal of Materials Research 12, 1806–1815 (1997). https://doi.org/10.1557/JMR.1997.0249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0249

Navigation