Skip to main content
Log in

A textured barium niobate with enhanced temperature stability of dielectric constant for high-frequency applications

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ba5Nb4O15 has shown excellent microwave dielectric properties and is under consideration as a low-temperature cofired ceramic material for advanced radio frequency (RF) applications. By combining tape casting and liquid phase upon sintering, sintered Ba5Nb4O15 thick films stacked to form laminates were produced with aligned elongated grains. This texture engineering, correlated with crystallographic orientation, provides remarkably high temperature stability of dielectric constant up to microwave frequency. Crystallographic texture arises in Ba5Nb4O15 induced by the primary consolidation process, hot pressing, and pulsed laser deposition. The dielectric anisotropy could be efficiently obtained in the textured samples, thereby enabling significant feasibility of microwave circuit designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Lin, Y.J. Chang, and H.R. Chuang: Design of a 900/1800 MHz dual-band LTCC chip antenna for mobile communications applications. Microwave J. 47, 78 (2004).

    Google Scholar 

  2. T.A. Vanderah: Talking ceramics. Science 298, 1182 (2002).

    Article  CAS  Google Scholar 

  3. M. Eberstein and W.A. Schiller: Development of high-permittivity glasses for microwave LTCC tapes. Glass Sci. Technol. 76, 8 (2003).

    CAS  Google Scholar 

  4. M. Eberstein, J. Möller, J. Wiegmann, and W.A. Schiller: Modification and simulation of dielectric properties of glass/crystal phase-composites for LTCC application. CFI Ceram. Forum Int. 80, E39 (2003).

    Google Scholar 

  5. D.W. Kim, J.R. Kim, S.H. Yoon, K.S. Hong, and C.K. Kim: Microwave dielectric properties of low-fired Ba5Nb4O15. J. Am. Ceram. Soc. 85, 2759 (2002).

    Article  CAS  Google Scholar 

  6. T.A. Vanderah, T.R. Collins, W. Wong-Ng, R.S. Roth, and L. Farber: Phase equilibria and crystal chemistry in the BaO-Al2O3-Nb2O5 and BaO-Nb2O5 systems. J. Alloys Compd. 346, 116 (2002).

    Article  CAS  Google Scholar 

  7. D.W. Kim, H.J. Youn, K.S. Hong, and C.K. Kim: Microwave dielectric properties of (1-x)Ba5Nb4O15-xBaNb2O6 mixtures. Jpn. J. Appl. Phys. 41, 3812 (2002).

    Article  CAS  Google Scholar 

  8. S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, P. Vaněk, P. Kužel, I.N. Jawahar, M.T. Sebastian, and P. Mohanan: High frequency dielectric properties of A5B4O15 microwave ceramics. J. Appl. Phys. 89, 3900 (2001).

    Article  CAS  Google Scholar 

  9. R. Ratheesh, M.T. Sebastian, P. Mohanan, M.E. Tobar, J. Hartnett, R. Woode, and D.G. Blair: Microwave characterisation of BaCe2Ti5O15 and Ba5Nb4O15 ceramic dielectric resonators using whispering gallery mode method. Mater. Lett. 45, 279 (2000).

    Article  CAS  Google Scholar 

  10. I.N. Jawahar, P. Mohanan, and M.T. Sebastian: A5B4O15 (A=Ba, Sr, Mg, Ca, Zn; B=Nb, Ta) microwave dielectric ceramics. Mater. Lett. 57, 4043 (2003).

    Article  CAS  Google Scholar 

  11. D.W. Kim, K.S. Hong, C.S. Yoon, and C.K. Kim: Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15-BaNb2O6 mixtures for LTCC applications. J. Eur. Ceram. Soc. 23, 2597 (2003).

    Article  CAS  Google Scholar 

  12. D.W. Kim, H.B. Hong, K.S. Hong, C.K. Kim, and D.J. Kim: The reversible phase transition and dielectric properties of BaNb2O6 polymorphs. Jpn. J. Appl. Phys. 41, 6045 (2002).

    Article  CAS  Google Scholar 

  13. H. Hughes, D.M. Iddles, and I.M. Reaney: Niobate-based microwave dielectrics suitable for third generation mobile phone base stations. Appl. Phys. Lett. 79, 2952 (2001).

    Article  CAS  Google Scholar 

  14. R.J. Cava: Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54 (2001).

    Article  CAS  Google Scholar 

  15. A.G. Belous, O.V. Ovchar, M. Valant, and D. Suvorov: Anomalies in the temperature dependence of the microwave dielectric properties of Ba6−xSm8+2x/3Ti18O54. Appl. Phys. Lett. 77, 1707 (2000).

    Article  CAS  Google Scholar 

  16. D.W. Kim, K.H. Ko, and K.S. Hong: Influence of copper(II) oxide additions to zinc niobate microwave ceramics on sintering temperature and dielectric properties. J. Am. Ceram. Soc. 84, 1286 (2001).

    Article  CAS  Google Scholar 

  17. H. Watanabe, T. Kimura, and T. Yamaguchi: Particle orientation during tape casting in the fabrication of grain-oriented bismuth titanate. J. Am. Ceram. Soc. 72, 289 (1989).

    Article  CAS  Google Scholar 

  18. J.H. Lee, S. Hyun, and K. Char: Quantitative analysis of scanning microwave microscopy on dielectric thin film by finite element calculation. Rev. Sci. Instrum. 72, 1425 (2001).

    Article  CAS  Google Scholar 

  19. S. Pagola, G. Polla, G. Leyva, M.T. Casais, J.A. Alonso, I. Rasines, and R.E. Carbonio: Crystal structure refinement of Ba5Nb4O15 and Ba5Nb4O15-x by Rietveld analysis of neutron and x-ray diffraction data. Mater. Sci. Forum 228-231, 819 (1996).

    Google Scholar 

  20. M. Thirumal and P.K. Davies: Ba8ZnTa6O24: A new high Q dielectric perovskite. J. Am. Ceram. Soc. 88, 2126 (2005).

    Article  CAS  Google Scholar 

  21. K. Wada, Y. Fukami, K. Kakimoto, and H. Ohsato: Microwave dielectric properties of textured BaLa4Ti4O15 ceramics. Jpn. J. Appl. Phys. 44, 7094 (2005).

    Article  CAS  Google Scholar 

  22. H. Sreemoolanadhan and M.T. Sebastian: High permittivity and low loss ceramics in the BaO-SrO-Nb2O5 system. Mater. Res. Bull. 30, 653 (1995).

    Article  CAS  Google Scholar 

  23. K. Wada, K. Kakimoto, and H. Ohsato: Grain-orientation control and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics. Jpn. J. Appl. Phys. 42, 6149 (2003).

    Article  CAS  Google Scholar 

  24. K. Wada, K. Kakimoto, and H. Ohsato: Microstructure and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics containing columnar crystals. J. Eur. Ceram. Soc. 23, 2535 (2003).

    Article  CAS  Google Scholar 

  25. L.C. Chang and B.S. Chiou: Effect of B2O3 nano-coating on the sintering behaviors and electrical microwave properties of Ba(Nd2-xSmx)Ti4O12 ceramics. J. Electroceram. 13, 829 (2004).

    Article  CAS  Google Scholar 

  26. P.J. Harrop: Temperature coefficients of capacitance of solids. J. Mater. Sci. 4, 370 (1969).

    Article  CAS  Google Scholar 

  27. D. Elwell and H.J. Scheel: Crystal Growth from High-Temperature Solutions (Academic Press, New York, 1975), p. 215–220.

    Google Scholar 

  28. N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito: Control of preferred orientation for ZnOx films: Control of self-texture. J. Cryst. Growth 130, 269 (1993).

    Article  CAS  Google Scholar 

  29. N.Y. Lee, T. Sekine, Y. Ito, and K. Uchino: Deposition profile of RF-magnetron-sputtered BaTiO3 thin films. Jpn. J. Appl. Phys. 33, 1484 (1994).

    Article  CAS  Google Scholar 

  30. C. Gao and X.D. Xiang: Quantitative microwave near-field microscopy of dielectric properties. Rev. Sci. Instrum. 69, 3846 (1998).

    Article  CAS  Google Scholar 

  31. D.W. Kim, K.S. Hong, C.H. Kim, and K. Char: Crystallographic orientation dependence of the dielectric constant in polymorphic BaNb2O6 thin films deposited by laser ablation. Appl. Phys. A 79, 677 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DW., Kim, BK., Je, HJ. et al. A textured barium niobate with enhanced temperature stability of dielectric constant for high-frequency applications. Journal of Materials Research 21, 2354–2360 (2006). https://doi.org/10.1557/jmr.2006.0283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0283

Navigation