Skip to main content
Log in

Irradiation damage of single crystal, coarse-grained, and nanograined copper under helium bombardment at 450 °C

  • Invited Feature Papers
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The irradiation damage behaviors of single crystal (SC), coarse-grained (CG), and nanograined (NG) copper (Cu) films were investigated under Helium (He) ion implantation at 450 °C with different ion fluences. In irradiated SC films, plenty of cavities are nucleated, and some of them preferentially formed on growth defects or dislocation lines. In the irradiated CG Cu, cavities formed both in grain interior and along grain boundaries; obvious void-denuded zones can be identified near grain boundaries. In contrast, irradiation-induced cavities in NG Cu were observed mainly gathering along grain boundaries with much less cavities in the grain interiors. The grains in irradiated NG Cu are significantly coarsened. The number density and average radius of cavities in NG Cu was smaller than that in irradiated SC Cu and CG Cu. These experiments indicate that grain boundaries are efficient sinks for irradiation-induced vacancies and highlight the important role of reducing grain size in suppressing radiation-induced void swelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. Y. Guerin, G.S. Was, and S.J. Zinkle: Materials challenges for advanced nuclear energy systems. MRS Bull. 34, 10 (2009).

    CAS  Google Scholar 

  2. S.J. Zinkle and J.T. Busby: Structural materials for fission & fusion energy. Mater. Today 12, 12 (2009).

    Article  CAS  Google Scholar 

  3. G.R. Odette and D.T. Hoelzer: Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. JOM 62, 84 (2010).

    Article  CAS  Google Scholar 

  4. L.K. Mansur: Void swelling in metals and alloys under irradiation-assessment of theory. Nucl. Technol. 40, 5 (1978).

    Article  CAS  Google Scholar 

  5. H. Trinkaus and W.G. Wolfer: Conditions for dislocation loop punching by helium bubbles. J. Nucl. Mater. 122, 522 (1984).

    Article  Google Scholar 

  6. J.F. Stubbins: Void swelling and radiation-induced phase-transformation in high-purity Fe-Ni-Cr alloys. J. Nucl. Mater. 141–143, 748 (1986).

    Article  Google Scholar 

  7. L.K. Mansur: Theory and experimental background on dimensional changes in irradiated alloys. J. Nucl. Mater. 216, 97 (1994).

    Article  CAS  Google Scholar 

  8. B.N. Singh, A.J.E. Foreman, and H. Trinkaus: Radiation hardening revisited: Role of intracascade clustering. J. Nucl. Mater. 249, 103 (1997).

    Article  CAS  Google Scholar 

  9. G.R. Odette and G.E. Lucas: Recent progress in understanding reactor pressure vessel steel embrittlement. Radiat. Eff. Defects Solids 144, 189 (1998).

    Article  CAS  Google Scholar 

  10. S.J. Zinkle and N.M. Ghoniem: Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51–52, 55 (2000).

    Article  Google Scholar 

  11. M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, and B.N. Singh: The microstructure and associated properties of irradiated fcc and bcc metals. J. Nucl. Mater. 276, 114 (2000).

    Article  CAS  Google Scholar 

  12. T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturla: Multiscale modeling of plastic flow localization in irradiated materials. Nature 406, 871 (2000).

    Article  Google Scholar 

  13. G.R. Odette and G.E. Lucas: Embrittlement of nuclear reactor pressure vessels. JOM 53, 18 (2001).

    Article  CAS  Google Scholar 

  14. K.E. Sickafus, R.W. Grimes, J.A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, and B.P. Uberuaga: Radiation-induced amorphization and radiation tolerance in structurally related oxides. Nat. Mater. 2, 217 (2007).

    Article  CAS  Google Scholar 

  15. B.N. Singh: Effect of grain-size on void formation during high-energy electron-irradiation of austenitic stainless steel. Philos. Mag. 29, 25 (1974).

    Article  CAS  Google Scholar 

  16. M. Rose, A.G. Balogh, and H. Hahn: Instability of irradiation induced defects in nanostructured materials. Nucl. Instrum. Methods Phys. Res., Sect. B 127–128, 119 (1997).

    Article  Google Scholar 

  17. Y. Chimi, A. Iwase, N. Ishikawa, A. Kobiyama, T. Inami, and S. Okuda: Instability of irradiation induced defects in nanostructured materials. J. Nucl. Mater. 297, 255 (2001).

    Article  Google Scholar 

  18. N. Nita, R. Schaeublin, M. Victoria, and R.Z. Valiew: Effects of irradiation on the microstructure and mechanical properties of nanostructured materials. Philos. Mag. 85, 723 (2005).

    Article  CAS  Google Scholar 

  19. T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, and K.E. Sickafus: Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90, 263115 (2007).

    Article  CAS  Google Scholar 

  20. M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria: Computer simulation of displacement cascades in nanocrystalline Ni. Phys. Rev. Lett. 88, 125505 (2002).

    Article  CAS  Google Scholar 

  21. X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).

    Article  CAS  Google Scholar 

  22. A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).

    Article  CAS  Google Scholar 

  23. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 136, 136102 (2008).

    Article  CAS  Google Scholar 

  24. E.G. Fu, J. Carter, G. Swadener, A. Misra, L. Shao, H. Wang, and X. Zhang: Size dependent enhancement of helium ion irradiation tolerance in sputtered Cu/V nanolaminates. J. Nucl. Mater. 385, 629 (2009).

    Article  CAS  Google Scholar 

  25. A. Misra and L. Thilly: Structural metals at extremes. MRS Bull. 35, 965 (2010).

    Google Scholar 

  26. N. Swaminathan, P.J. Kamenski, D. Morgan, and I. Szlufarska: Effect of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC. Acta Mater. 58, 2843 (2010).

    Article  CAS  Google Scholar 

  27. Y. Yang, H.C. Huang, and S.J. Zinkle: Anomaly in dependence of radiation-induced vacancy accumulation on grain size. J. Nucl. Mater. 405, 261 (2010).

    Article  CAS  Google Scholar 

  28. Q.M. Wei, Y.Q. Wang, M. Nastasi, and A. Misra: Nucleation and growth of bubbles in He ion-implanted V/Ag multilayers. Philos. Mag. 91, 553 (2011).

    Article  CAS  Google Scholar 

  29. Y.F. Zhang, H.C. Huang, P.C. Millett, M. Tonks, and D. Wolf: Atomistic study of grain boundary sink strength under prolonged electron irradiation. J. Nucl. Mater. 422, 69 (2012).

    Article  CAS  Google Scholar 

  30. R.B. Adamson, W.L. Bell, and P.C. Kelly: Neutron irradiation effect of copper at 327°C. J. Nucl. Mater. 92, 149 (1980).

    Article  CAS  Google Scholar 

  31. B.N. Singh, T. Leffers, W.V. Green, and M. Victoria: Grain boundary related effect in aluminum during 600Mev proton irradiation at different temperatures. J. Nucl. Mater. 122, 703 (1984).

    Article  CAS  Google Scholar 

  32. M. Dollar and H. Gleiter: Point-defect annihilation at grain boundaries in gold. Scr. Metall. 19, 481 (1985).

    Article  CAS  Google Scholar 

  33. S.J. Zinkle and R.L. Sindelar: Defect microstructures in neutron irradiated copper and stainless steel. J. Nucl. Mater. 155–157, 1196 (1988).

    Article  Google Scholar 

  34. S.J. Zinkle and K. Farrell: Void swelling and defect cluster formation in reactor irradiated copper. J. Nucl. Mater. 168, 262 (1989).

    Article  CAS  Google Scholar 

  35. S.J. Zinkle: Microstructure of ion irradiated ceramic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 91, 234 (1994).

    Article  CAS  Google Scholar 

  36. P.A. Thorsen, J.B. Bilde-Sorensen, and B.N. Singh: Bubble formation at grain boundaries in helium implanted copper. Scr. Mater. 51, 557 (2004).

    Article  CAS  Google Scholar 

  37. W.Z. Han, M.J. Demkowicz, E.G. Fu, Y.Q. Wang, and A. Misra: Effect of grain boundary character on sink efficiency. Acta Mater. 60, 6341 (2012).

    Article  CAS  Google Scholar 

  38. G.S. Was: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007).

    Google Scholar 

  39. P.B. Johnson and D.J. Mazey: The gas-bubble superlatic and the development of surface structure in He+ and H+ irradiated metals at 300K. J. Nucl. Mater. 93, 721 (1980).

    Article  Google Scholar 

  40. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

    Google Scholar 

  41. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Text Book for Materials Science (Springer, New York, 1996).

    Book  Google Scholar 

  42. L.D. Glowinski, C. Fiche, and M. Lott: Study on formation of cavities in copper irradiation with copper ions of 500 keV. J. Nucl. Mater. 47, 295 (1973).

    Article  CAS  Google Scholar 

  43. L.D. Glowinski and C. Fiche: Study on formation of irradiated voids in copper III irradiation with 500 keV copper ions and effect of implanted gases. J. Nucl. Mater. 61, 29 (1976).

    Article  CAS  Google Scholar 

  44. S.J. Zinkle and E.H. Lee: Effect of oxygen on vacancy cluster morphology in metals. Metall. Trans. A 21, 1037 (1990).

    Article  Google Scholar 

  45. S.J. Zinkle and K. Farrell: Microstructure and cavity swelling in reactor-irradiated dilute copper-boron alloy. J. Nucl. Mater. 179, 994 (1991).

    Article  Google Scholar 

  46. B.N. Singh and A. Horsewell: Effect of fission neutron and 600 MeV proton irradiations on microstructural evolution in OFHC copper. J. Nucl. Mater. 212, 410 (1994).

    Article  Google Scholar 

  47. T. Muroga, H. Watanabe, N. Yoshida, H. Kurishita, and M.L. Hamilton: Microstructure and tensile properties of neutron irradiated Cu and Cu-5Ni containing isotopically controlled boron. J. Nucl. Mater. 225, 137 (1995).

    Article  CAS  Google Scholar 

  48. T. Muroga, H. Watanabe, and N. Yoshida: Effect of solid transmutants and helium in copper studied by mixed-spectrum neutron irradiation. J. Nucl. Mater. 258, 955 (1998).

    Article  Google Scholar 

  49. P. Wang, D.A. Thompson, and W. Smeltzer: Implantation and grain growth in Ni thin films induced by Bi and Ag ions. Nucl. Instrum. Methods Phys. Res., Sect. B 16, 288 (1986).

    Article  Google Scholar 

  50. H.A. Atwater, C.V. Thompson, and H.I. Smith: Ion bombardment enhanced grain growth in germanium, silicon and gold thin films. J. Appl. Phys. 64, 2337 (1988).

    Article  CAS  Google Scholar 

  51. D.E. Alexander, G.S. Was, and L.E. Rehn: The heat of mixing effect on ion induced grain growth. J. Appl. Phys. 70, 1252 (1991).

    Article  Google Scholar 

  52. D. Kaoumi, A.T. Motta, and R.C. Birtcher: A thermal spike model of grain growth under irradiation. J. Appl. Phys. 104, 073525 (2008).

    Article  CAS  Google Scholar 

  53. A. Hishinuma, Y. Katano, and K. Shiraishi: Surface effect on void swelling behavior of stainless steel. J. Nucl. Sci. Technol. 14, 664 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhong Han.

Additional information

Address all correspondence to this author.

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, W., Fu, E.G., Demkowicz, M.J. et al. Irradiation damage of single crystal, coarse-grained, and nanograined copper under helium bombardment at 450 °C. Journal of Materials Research 28, 2763–2770 (2013). https://doi.org/10.1557/jmr.2013.283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.283

Navigation