Skip to main content
Log in

The influence of fine ferrite formation on the γ/α interface, fine bainite and retained austenite in a thermomechanically-processed transformation induced plasticity steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An Fe-0.26C-1.96Si-2Mn with 0.31Mo (wt%) steel was subjected to a novel thermomechanical processing route to produce fine ferrite with different volume fractions, bainite, and retained austenite. Two types of fine ferrites were found to be: (i) formed along prior austenite grain boundaries, and (ii) formed intragranularly in the interior of austenite grains. An increase in the volume fraction of fine ferrite led to the preferential formation of blocky retained austenite with low stability, and to a decrease in the volume fraction of bainite with stable layers of retained austenite. The difference in the morphology of the bainitic ferrite and the retained austenite after different isothermal ferrite times was found to be responsible for the deterioration of the mechanical properties. The segregation of Mn, Mo, and C at distances of 2–2.5 nm from the ferrite and retained austenite/martensite interface on the retained austenite/martensite site was observed after 2700 s of isothermal hold. It was suggested that the segregation occurred during the austenite-to-ferrite transformation, and that this would decrease the interface mobility, which affects the austenite-to-ferrite transformation and ferrite grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. P.D. Hodgson: The evolution of ferrite grain size in structural steels. Mater. Forum 23, 105 (1999).

    CAS  Google Scholar 

  2. H. Beladi, G.L. Kelly, and P.D. Hodgson: Ultrafine grained structure formation in steels using dynamic strain induced transformation processing. Int. Mater. Rev. 52, 14 (2007).

    Article  CAS  Google Scholar 

  3. H.K.D.H. Bhadeshia: Large chunks of very strong steel. Mater. Sci. Technol. 21, 1293 (2005).

    Article  CAS  Google Scholar 

  4. F.G. Caballero and H.K.D.H. Bhadeshia: Very strong bainite. Curr. Opin. Solid State Mater. Sci. 8, 251 (2004).

    Article  CAS  Google Scholar 

  5. I.B. Timokhina, H. Beladi, X. Xiong, Y. Adachi, and P.D. Hodgson: Nanoscale microstructural characterization of a nanobainitic steel. Acta Mater. 59, 5511 (2011).

    Article  CAS  Google Scholar 

  6. V.F. Zackay, E.R. Parker, D. Fahr, and R. Bush: The enhancement of ductility in high strength steels. Trans. ASM 60, 252 (1967).

    CAS  Google Scholar 

  7. G.R. Speich, V.A. Demarest, and R.L. Miller: Formation of austenite during intercritical annealing of DP steel. Metall. Mater. Trans. 12, 1419 (1981).

    Article  CAS  Google Scholar 

  8. W.W. Gerberich, P.L. Hemmings, M.D. Merz, and V.F. Zackay: Preliminary toughness results on TRIP steels. Trans. ASM 61, 843 (1968).

    CAS  Google Scholar 

  9. D.C. Ludwigson and J.A. Berger: Plastic behaviour metastable austenitic stainless steels. J. Iron Steel Inst. 207, 63 (1969).

    CAS  Google Scholar 

  10. S.D. Antolovich: Fracture toughness and strain-induced phase transformation. Metall. Soc. AIME Trans. 242, 2371 (1968).

    Google Scholar 

  11. S.D. Antolovich and S. Singh: On the toughness increment associated with the austenite to martensite phase transformation. Metall. Mater. Trans. 2, 2135 (1971).

    Article  CAS  Google Scholar 

  12. I. Tamura: Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Metal Sci. 16, 245 (1982).

    Article  CAS  Google Scholar 

  13. V.F. Bhandarkar, V.F. Zackay, and E.R. Parker: Stability and mechanical properties of some metastable austenitic steels. Metall. Mater. Trans. 3, 2619 (1972).

    Article  CAS  Google Scholar 

  14. F. Lecroisey and A. Pineau: Martensitic transformations induced by plastic deformation in the Fe–Ni–Cr–C system. Metall. Mater. Trans. 3, 387 (1972).

    Article  CAS  Google Scholar 

  15. B.G. Olson and M. Cohen: Kinetics of strain-induced martensitic nucleation. Metall. Mater. Trans. 6, 791 (1975).

    Article  Google Scholar 

  16. B.G. Olson and M. Cohen: Stressed-assisted isothermal martensitic transformation: Application to TRIP steels. Metall. Mater. Trans. 13, 1907 (1982).

    Article  CAS  Google Scholar 

  17. G. Krauss: Deformation and fracture in martensitic carbon steels tempered at low temperature. Metall. Mater. Trans. 32, 205 (2001).

    Article  Google Scholar 

  18. Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, and D. Raabe: Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Mater. 65, 215 (2014).

    Article  CAS  Google Scholar 

  19. M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, and D. Raabe: Nonalaminate transformation-induced plasticity-twinning induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater. 85, 216 (2015).

    Article  CAS  Google Scholar 

  20. K. Zhu, H. Chen, J.P. Masse, O. Bouaziz, and G. Gachet: The effect of prior ferrite formation on bainite and martensite transformation kinetics in advanced high-strength steels. Acta Mater. 61, 6025 (2013).

    Article  CAS  Google Scholar 

  21. T. Waterschoot, A.K. De, S. Vandeputte, and B.C. De Cooman: Static strain aging phenomena in cold-rolled dual-phase steels. Metall. Mater. Trans. 34, 781 (2003).

    Article  Google Scholar 

  22. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Transmission electron microscopy characterization of the bake-hardening behaviour of the transformation induced plasticity and dual phase steels. Metall. Mater. Trans. 38, 2442 (2007).

    Article  CAS  Google Scholar 

  23. M.G. Akben, B. Bacroix, and J.J. Jonas: Effect of vanadium and molybdenum addition on high temperature recovery, recrystallisation and precipitation behaviour of niobium-based microalloyed steels. Acta Metall. 31, 161 (1983).

    Article  CAS  Google Scholar 

  24. T. Wada, H. Wada, J.F. Elliot, and J. Chipman: Activity of carbon and solubility of carbides in the FCC Fe–Mo–C, Fe–Cr–C and Fe–V–C alloys. Metall. Trans. 3, 2856 (1972).

    Article  Google Scholar 

  25. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed. (IOM Communications Ltd; The Institute of Materials, London; Cambridge, 2001); p. 454.

    Google Scholar 

  26. M.V. Li, D.V. Niebuhr, L.L. Meekisho, and D.G. Atteridge: A computational model for the prediction of steel hardenability. Metall. Mater. Trans. 29, 661 (1998).

    Article  Google Scholar 

  27. K.W. Andrews: Empirical formulae for the calculation of some transformation temperatures. J. Iron Steel Inst. July, 721 (1965).

    Google Scholar 

  28. R.A. Grange: Estimating the hardenability of carbon steels. Metall. Trans. 4, 2231 (1973).

    Article  CAS  Google Scholar 

  29. H.K.D.H. Bhadeshia: Theoretical analysis of changes in cementite composition during the tempering of bainite. Mater. Sci. Technol. 5, 131 (1989).

    Article  CAS  Google Scholar 

  30. R. Song, D. Ponge, and D. Raabe: Influence of Mn Content on the microstructure and mechanical properties of ultrafine grained C–Mn steels. ISIJ Int. 45, 1721 (2005).

    Article  CAS  Google Scholar 

  31. M. Calcagnotto, D. Pongo, and D. Raabe: On the effect of Mn on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall. Mater. Trans. 43, 37 (2012).

    Article  CAS  Google Scholar 

  32. H. Beladi, I.B. Timokhina, X.Y. Xiong, and P.D. Hodgson: A novel thermomechanical approach to produce a fine ferrite and low-temperature bainitic composite microstructure. Acta Mater. 61, 7240 (2013).

    Article  CAS  Google Scholar 

  33. Y. Adachi, M. Wakita, H. Beladi, and P.D. Hodgson: The formation of ultrafine ferrite through static transformation in low carbon steels. Acta Mater. 55, 4925 (2007).

    Article  CAS  Google Scholar 

  34. B. Eghbali, A. Abdollah-Zadeh, H. Beladi, and P.D. Hodgson: Characterization on ferrite microstructure evolution during large strain warm torsion testing of plain low carbon steel. Mater. Sci. Eng., A 435–436, 499 (2006).

    Article  CAS  Google Scholar 

  35. H. Beladi, I.B. Timokhina, S. Mukherjee, and P.D. Hodgson: Ultrafine ferrite formation through isothermal static phase transformation. Acta Mater. 59, 4186 (2011).

    Article  CAS  Google Scholar 

  36. I.B. Timokhina, E.V. Pereloma, and P.D. Hodgson: Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall. Mater. Trans. 35, 2331 (2004).

    Article  Google Scholar 

  37. Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, and D. Raabe: Effcts of retained austenite volume fraction, morphology and carbon content on strength and ductility of nanostructured TRIP assisted steels. Mater. Sci. Eng. 636, 551 (2015).

    Article  CAS  Google Scholar 

  38. J.B. Seol, D. Raabe, P.P. Choi, Y.R. Im, and C.G. Park: Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic-austenitic TRIP steels. Acta Mater. 60, 6183 (2012).

    Article  CAS  Google Scholar 

  39. O. Dmitrieva, D. Ponge, G. Inden, J. Millan, P. Choi, J. Sietsma, and D. Raabe: Chemical gradient across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Mater. 59, 364 (2011).

    Article  CAS  Google Scholar 

  40. F.G. Caballero, M.K. Miller, S.S. Babu, and C. Garcia-Mateo: Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Mater. 55, 381 (2007).

    Article  CAS  Google Scholar 

  41. L. Ryde: Application of EBSD to analysis of microstructures in commercial steels. Mater. Sci. Technol. 22, 1297 (2006).

    Article  CAS  Google Scholar 

  42. R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert: Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique. Mater. Sci. Eng. 447, 285–297 (2007).

    Article  CAS  Google Scholar 

  43. S. Zaefferer, P. Romano, and F. Friedel: EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels. J. Microsc. 230, 499–508 (2008).

    Article  CAS  Google Scholar 

  44. B.D. Cullity: Elements of X-Ray Diffraction (Addison-Wesley, New York, 1978); p. 555.

    Google Scholar 

  45. M.K. Miller: Atom Probe Tomography (Springer, New York, 2000).

    Book  Google Scholar 

  46. K. Tsuzaki, A. Kodai, and T. Maki: Formation mechanism of bainitic ferrite in an Fe-2 PctSi-0.6 pct C alloy. Metall. Mater. Trans. 25, 2009 (1994).

    Article  Google Scholar 

  47. B.P.J. Sandvik: The bainite reaction in Fe-Si-c alloys: Secondary stage. Metall. Trans. 13, 789 (1982).

    Article  CAS  Google Scholar 

  48. L. Malet, M.R. Barnett, P.J. Jacques, and S. Godet: Variant selection during the γ-to-αb phase transformation in hot-rolled bainitic TRIP-aided steels. Scr. Mater. 61, 520 (2009).

    Article  CAS  Google Scholar 

  49. W. Gong, Y. Tomota, M.S. Koo, and Y. Adachi: Effect of ausforming on nanobainite steel. Scr. Mater. 63, 819 (2010).

    Article  CAS  Google Scholar 

  50. D. Quidort and Y.J.M. Brechet: Isothermal growth kinetics of bainite in 0.5% C steels. Acta Metall. 49, 4161 (2001).

    CAS  Google Scholar 

  51. S. Hashimoto, M. Sudo, K. Mimura, and T. Hosoda: Effect of microstructure on mechanical properties of C-Mn high strength hot rolled sheet steel. Trans. Iron Steel Inst. Jpn. 26, 985 (1986).

    Article  CAS  Google Scholar 

  52. J.B. Gilmour, G.R. Purdy, and J.S. Kirdalky: Partition of Mn during the proeutectoid ferrite transformation in steel. Metall. Mater. Trans. 3, 3213 (1972).

    Article  CAS  Google Scholar 

  53. T. Wada, H. Wada, J.F. Elliott, and J. Chipman: Thermodynamics of the FCC Fe–Mn–C and Fe–Si–C alloys. Metall. Mater. Trans. 3, 1657 (1972).

    Article  CAS  Google Scholar 

  54. J.R. Bradley and H.I. Aaronson: Growth kinetics of grain boundary ferrite allotrimorphs in Fe–C–X alloys. Metall. Mater. Trans. 12, 1729 (1981).

    Article  CAS  Google Scholar 

  55. C. Capdevila, J. Cornide, K. Tanaka, K. Nakanishi, and E. Urones-Garrote: Kinetic transition during ferrite growth in Fe–C–Mn medium carbon steel. Metall. Mater. Trans. 42, 3719 (2011).

    Article  CAS  Google Scholar 

  56. H. Guo, G.R. Purdy, M. Enomoto, and H.I. Aaronson: Kinetic transitions and substitutional solute (Mn) fields associated with later stages of ferrite growth in Fe–C–Mn–Si. Metall. Mater. Trans. 37, 1721 (2006).

    Article  Google Scholar 

  57. H.S. Zurob, C.R. Hutchinson, A. Béhé, G.R. Purdy, and Y.J.M. Bréchet: A transition from local equilibrium to paraequilibrium kinetics for ferrite growth in Fe–C–Mn: A possible role of interfacial segregation. Acta Mater. 56, 2203 (2008).

    Article  CAS  Google Scholar 

  58. O. Thuillier, F. Danoix, M. Gounbé, and D. Blavette: Atom probe tomography of the austenite–ferrite interphase boundary composition in a model alloy Fe–C–Mn. Scr. Mater. 55, 1071 (2006).

    Article  CAS  Google Scholar 

  59. H. Guo, S.W. Yang, C.J. Shang, X.M. Wang, and X.L. He: A quantitative analysis of Mn segregation at partitioned ferrite/austenite interface in a Fe-C-Mn-Si alloy. J. Mater. Sci. Technol. 25, 383 (2009).

    Article  CAS  Google Scholar 

  60. M. Bouet, R. Fillipine, E. Essadiqi, J. Root, and S. Yue: The effect of Mo in Si–Mn Nb bearing TRIP steels. Mater. Sci. Forum 284, 319 (1998).

    Article  Google Scholar 

  61. E.S. Humphreys, H.A. Fletcher, J.D. Hutchins, A.J. Garratt-Reed, W.T. Reynolds, Jr., H.I. Aaronson, G.R. Purdy, and G.D.W. Smith: Molybdenum accumulation at ferrite: Austenite interfaces during isothermal transformation of an Fe-0.24 pct C-0.93 pct Mo alloy. Metall. Trans. 35, 1223 (2004).

    Article  Google Scholar 

  62. J. Fridberg, L.E. Torndahl, and M. Hillert: Diffusion in iron. Jernkont. Ann. 153, 263 (1969).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the technical and scientific support of the Center for Electron Microscopy at Monash University. One of the authors (I.T.) acknowledges the support of Outside Study Program from Deakin University. One of the authors (P.D.H.) also acknowledges the support of the ARC Laureate Fellowship scheme. Atom probe tomography (M.K.M.) was supported through a user project supported by ORNL’s Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana B. Timokhina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timokhina, I.B., Miller, M.K., Beladi, H. et al. The influence of fine ferrite formation on the γ/α interface, fine bainite and retained austenite in a thermomechanically-processed transformation induced plasticity steel. Journal of Materials Research 31, 806–818 (2016). https://doi.org/10.1557/jmr.2016.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.73

Navigation